
Lecture Notes for

Logic and Computability

Course Number: IND04033UF

Contact

Bettina Könighofer
Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology, Austria
bettina.koenighofer@iaik.tugraz.at

mailto:bettina.koenighofer@iaik.tugraz.at

Table of Contents

8 Binary Decision Diagrams 3
8.1 Binary Decision Diagram . 3
8.2 Reduced Ordered BDDs . 5
8.3 Construction of Reduced Ordered BDDs 10
over

1

8
Binary Decision Diagrams

In this chapter we introduce an efficient data structures to store Boolean for-
mulas. One of the most frequently used data structure is called reduced ordered
binary decision diagram (ROBDDs).

8.1 Binary Decision Diagram

Binary decision diagrams (BDDs) are an efficient way to represent Boolean for-
mulas. In this chapter, we start with simple binary decision diagrams, and we
will extend them until we reach the data structure of reduced ordered BDDs.

Definition - Directed Acyclic Graph A directed acyclic graph (DAG) is
a directed graph that does not have any cycles. A node of a DAG is initial if
there are no edges pointing to that node. A node is called terminal if there are
no edges out of that node.

Definition - Binary Decision Diagram. A binary decision diagram that
represents a Boolean formula f is a DAG with two terminal nodes that are
labelled with 0 and 1. The internal nodes are labelled with the Boolean variables
of the formula, e.g., a, b, c, Each internal node has exactly two outgoing
edges: one line that is labeled with a T (the then-edge), and the other line that
is labeled with an E (the else-edge) or marked with a circle. There is a unique
initial node called the function node labeled with f that does not has any in-
going edges and one outgoing edge to the internal variable node on the first
level.

Note that within a BDD, nodes can share leaves. Therefore, BDDs are more

3

4 Chapter 8. Binary Decision Diagrams

general than trees.
Example. Figure 8.1 shows a binary decision diagram with four layers of

variables a, b, c, and d.

f

a

b

c

d

1 0

b

c

T E

T E

T

E

T E

T E

T

E

f

a

b

c

d

1 0

b

c

Figure 8.1: A simple BDD with different edge labeling.

Evaluating a model in a BDD

Each binary decision diagram determines a unique boolean formula in the fol-
lowing way. Given a model (an assignment to the variables in the formula), we
start at the root of the diagram and take the T line whenever the value of the
variable at the current node is true, otherwise, we travel along the line marked
with E. The truth value of the formula is the value of the terminal node we
reach.

Example. Consider the BDD given in Figure 8.1. To which truth value
does the formula represented by the BDD evaluates under the given model

M := {a = >, b = >, c = >, d = >}?

Solution. We start at the root node and only follow the then-edges and end
in the terminal node marked with 1. Therefore, the model M is a satisfying
assignment.

Constructing formulas from BDDs

To find the formula f in disjunctive normal form that is represented by the BDD,
we need to find all paths that end in the terminal node 1. Each path forms a
cube of the DNF formula: if we follow the then-edge the corresponding variable
appears positive in the cube, if we follow the else-edge, we use the negated
variable in the cube.

8.2. Reduced Ordered BDDs 5

Example. Consider the BDD given in Figure 8.1. Construct the formula
represented by the BDD.

Solution. The first path that ends in the terminal node 1 is given by always
taking the then-edges. This path results in the first cube (a∧ b∧ c). The second
path is given by taking the then-edges on level 1 and 2, the else-edge on level 3
and the then-edge on level 4. This path gives us the second cube (a∧ b∧¬c∧d).
By enumerating and encoding all paths into cubes, we end up in the following
formula:

f = (a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c ∧ d) ∨ (a ∧ ¬b ∧ d) ∨ (¬a ∧ b ∧ d) ∨ (¬a ∧ ¬b ∧ c ∧ d)

Size of a BDD

If the root of a BDD is an internal node labeled with the variable v then it
has two sub-trees: one for the value of v being true and another one for v
having value false. For a Boolean formula f with n variables, in the worst case
the corresponding BDD will have 2n+1 − 1 nodes. A truth table would have
2n lines. However, binary decision diagrams often contain a lot of redundancy
which we can exploit. This makes it possible to often represent large formulas
by relatively small BDDs.

8.2 Reduced Ordered BDDs

From BDD to Reduced BDDs

To reduce the size of the BDD, several optimizations can be exploited.
Optimization 1: Complement attribute and single terminal node.

An edge can be negated by marking the edge with a full circle. By negating all
edges that lead to the terminal node 0, the terminal node 0 can be removed and
all edges will be redirected and negated to terminal node 1.

An example BDD using the complement attribute is shown in Figure 8.2.

6 Chapter 8. Binary Decision Diagrams

f

a

b

c c

1

b

c

0

c

f

a

b

c c

1

b

c c

Figure 8.2: Left: Simple BDD. Right: After optimization 1: BDD with comple-
mented edges.

Optimization 2 - Dangling edges. Since there is only one terminal node
left, there is no need to actually connect the edges leading to the terminal node
with the terminal node. We can let the edges from internal nodes from the last
level dangling and know implicitly that those edges lead to the node 1. This
optimization is just to make it easier to draw a BDD on paper. Figure 8.3 shows
the example BDD from above with dangling edges.

f

a

b

c c

b

c c

Figure 8.3: Optimization 2: BDD with dangling edges.

Optimization 3 - Removal of duplicate sub-BDDs. If two distinct
nodes n and m in the BDD are the roots of structurally identical sub-BDDs,
then we eliminate one of them, say m, and redirect all its incoming edges to the
other one.

Consider the BDD from Figure 8.3. With the exception of the left most node
labeled with c, the other three nodes labeled with c in Figure 8.3 have identical

8.2. Reduced Ordered BDDs 7

sub-trees. Therefore, applying Optimization 3 results in the BDD shown in
Figure 8.4 with two c-nodes removed.

f

a

b

c

b

c

Figure 8.4: Optimization 3: BDD with no duplicate sub-BDDs.

Optimization 4 - Removal of redundant nodes. If both outgoing edges
of a node n point to the same node m, then we eliminate that node n, sending
all its incoming edges to m.

Figure 8.5 gives examples from nodes that are redundant and can be removed,
and notes that are not redundant due to negated edges.

a

b

Redundant

a

Redundant
(special case)

a

b

Not Redundant

a

Not Redundant
(special case)

Figure 8.5: Examples of redundant and not redundant nodes.

Let us consider the BDD given in Figure 8.4. The node b on the right sub-
tree is redundant, as its value does not affect the values of paths that go trough
it. The same goes for the node c on the left, as both of its outgoing edges are
not negated. The result after the reduction is given in Figure 8.6.

Applying the optimizations rules from above exhaustively until no further
reductions are possible results in a Reduced BDD.

8 Chapter 8. Binary Decision Diagrams

f

a

b

c

Figure 8.6: Optimization 4: BDD with no redundant nodes.

Ordered BDDs

Having multiple occurrences of a variable along a path seem rather inefficient.
Therefore, ordered BDDs impose an ordering on the variables occurring along
any path.

Definition - Ordered BDD. Let [x1,. . . , xn] be an ordered list of variables
without duplications. We say that a BDD has the ordering x1 < · · · < xn if
all variable labels of the BDD occur in that list and, for every occurrence of xi

followed by xj along any path in the BDD, we have i < j. An ordered BDD
(OBDD) is a BDD which has an ordering for some list of variables.

It follows from the definition of OBDDs that one cannot have multiple oc-
currences of any variable along a path. Note that all BDDs we considered so far
were ordered.

The impact of the chosen variable ordering. For most examples, the
chosen variable ordering makes a significant difference to the size of the ROBDD
representing a given boolean formula. The sensitivity of the size of an ROBDD
to the particular variable ordering is one of the disadvantages of ROBDDs. Al-
though finding the optimal ordering is itself a computationally expensive prob-
lem, there are good heuristics which will usually produce a fairly good ordering.
In this lecture, we consider from now on only BDDs that are reduced and
ordered, i.e., ROBDDs.

The commitment to an ordering gives us a unique representation of boolean
formulas as ROBDDs.

Theorem: ROBDDs give a canonical representations of proposi-
tional formulas. This means that for a given variable order, if two formulas
f1 and f2 are semantically equivalent, then they will be represented via the very
same ROBDD.

For example, if you consider the two formulas f1 =
(
a ∧ (b ∨ c)

)
and f2 =(

a∧(a∨b)∧(b∨c)
)
. The two formulas are syntactically different but semantically

8.2. Reduced Ordered BDDs 9

equivalent. Therefore, they will be represented by the same ROBDD. This makes
it possible to implement equivalence checking using ROBDDs in constant time.

Example. Check whether the given models M1, M2 and M3 are satisfying
models or falsifying models using the ROBDD given in Figure 8.7.

• M1 : a = >, b = ⊥, c = >, d = >
• M2 : a = ⊥, b = >, c = ⊥, d = ⊥
• M3 : a = >, b = >, c = ⊥, d = ⊥

Solution. M1 2 f , M2 � f and M3 � f .

f

a

b

c

d

b

Figure 8.7: ROBDD

Constructing Formulas from ROBDDs

To find the formula in DNF that is represented by the ROBDD, we again search
for all paths which corresponding assignment make the formula true. An assign-
ment makes the formula true, if its corresponding path has an even number of
negations (full circles).

Example. Consider the ROBDD in Figure 8.8. Give the formula that is
represented by the ROBDD.

10 Chapter 8. Binary Decision Diagrams

f

x

y

z

Figure 8.8: Reduced Ordered BDD.

Solution. The first path follows the else-edge from x and the then-edge from
y. This path has no negations and is therefore accepting. The path that follows
the else-edge from x and y and the the then-edge from z has one negation.
Therefore, the corresponding assignment does not satisfy the formula. If we
enumerate all paths with an even number of negations and transform them to
cubes, we obtain the following formula in DNF:

f := (¬x ∧ y) ∨ (¬x ∧ ¬y ∧ ¬z) ∨ (x ∧ z).

8.3 Construction of Reduced Ordered BDDs

We discuss how to construct a ROBDD directly from a given formula. The
algorithm for the construction of ROBDDs is based on the cofactors of the given
formula.

Definition - Cofactor. The cofactors are derived from the formula f by
substituting truth values for the propositional variables. For a formula f , fx =
f [x← 1] and f¬x = f [x← 0] are the positive and negative cofactors of f with
respect to the variable x.

Example. Compute the positive and the negative cofactor w.r.t. the vari-
able x for the following formula:

f = (x ∧ y) ∨ (¬x ∧ z).

Solution. Setting x to true results in the positive cofactor

fx = (> ∧ y) ∨ (⊥ ∧ z) = y.

8.3. Construction of Reduced Ordered BDDs 11

Setting x to false gives us the negative cofactor

f¬x = (⊥ ∧ y) ∨ (> ∧ z) = z.

Algorithm to Construct a ROBDD

Step 1. Compute all cofactors.
In the first step, recursively compute all cofactors with respect to the given

variable order. If a cofactor matches a cofactor or the negation of a cofactor that
you have seen before, note that the two cofactors are the same and backtrack.
If you would ignore this step, the final BDD would not be reduced.

For example, if a < b < c < d, we first compute fa with fa = f [a ← 1].
Next, we compute fab with fab = fa[b ← 1]. Next, we compute fabc with
fabc = fab[c← 1] and so on.

Step 2. Draw BDD from cofactors.
We draw a ROBDD, such that each node represents a cofactor. For root

node (e.g., labeled with a) of the BDD represents the entire formula f . We can
therefore connect it with a function node labeled with f . The internal node that
we reach by taking the then-edge represents the positive cofactor fa. The internal
node that we reach by taking the else-edge represents the negative cofactor f¬a.

We construct the BDD such that one node representing a cofactor leads us
to the next one in the recursive computation. If a cofactor resolves to true, we
draw a danling edge. If a cofactor resolves to false, we draw a negated dangling
edge. If a cofactor is equivalent to a cofactor we have already seen, we draw the
edge to the node that represents this cofactor.

Step 3. Shift negations upwards.
In the final step, we follow the convention that complemented edges marked

with full circles are only allowed for else-edges. However, the execution of step
2 might cause complemented dangling then-edges. To remove the negations on
the then-edges of the BDD, we shift illegal negations upwards.

To do so, if a then-edge is negated, we consider the origin node of the then-
edge and negate all its incoming and outgoing edges. If an edge gets two negations
in this process, they cancel each other out. If one of the outgoing edges that
got negated was a then-edge, we consider the origin node of this then-edge and
negate all its incoming and outgoing edges. This process shifts the negations
upwards until the root node is reached.

Example. Consider the following formula f = (a ∧ b ∨ ¬a) ∧ ¬c ∧ d ∨ c and
the variable order a < b < c < d. Construct a ROBDD that represents f .

Solution. Step 1. Compute all cofactors. Note that fnega = fab.

12 Chapter 8. Binary Decision Diagrams

f = (a ∧ b ∨ ¬a) ∧ ¬c ∧ d ∨ c
fa = b ∧ ¬c ∧ d ∨ c

fab = ¬c ∧ d ∨ c
fabc = >
fab¬c = d

fab¬cd = >
fab¬c¬d = ⊥

fa¬b = c
fa¬bc = >
fa¬b¬c = ⊥

f¬a = ¬c ∧ d ∨ c = fab

Step 2. Draw BDD from cofactors. The BDD is shown in Figure 8.9.

f

fa

fab

c

b

fab¬c

d

fa¬b

c

a

Figure 8.9: ROBDD.

Step 3. Shift negations upwards. Since there are no negated then-edges, there
is nothing more to be done and Figure 8.9 represents the final ROBDD.

Example. Consider the following formula f = (a∧¬c)∨
(
¬a∧ (b∨ (¬b∧c))

)
and the variable order a < b < c. Construct a ROBDD that represents f .

Solution. Step 1. Compute all Cofactors.

8.3. Construction of Reduced Ordered BDDs 13

f = (a ∧ ¬c) ∨
(
¬a ∧ (b ∨ (¬b ∧ c))

)
fa = ¬c

fac = ⊥
fa¬c = >

f¬a = b ∨ (¬b ∧ c)
f¬ab = >
f¬a¬b = c = ¬fab

Note that fa = ¬c. The variable b does not appear in fa and setting b to a
certain value will not have an effect in fa. Therefore, we skip the cofactor of b
and immediately compute the fac and fa¬c.

Step 2. Draw BDD from Cofactors. The BDD is given in Figure 8.10.

f

a

fa f¬a¬b

c

b

Figure 8.10: ROBDD with illegal compliments.

Step 3. Shift negations Upwards. The ROBDD in Figure 8.10 has an illegal
complement, i.e., the then edge of the internal node c is negated. Therefore, we
negate all edges of the c node, which double-negates the illegal complement and
makes it true again. This way, the problem is pushed upwards and has to be
repeated, until no then-edge is left negated. By removing the negation of the
then-edge of c, we create a negation at the then-edge from a. This is illustrated
in Figure 8.11. To remove this negation, we repeat the same procedure with the
edges of a. The result and final ROBDD can be seen in Figure 8.12.

14 Chapter 8. Binary Decision Diagrams

f

a

fa f¬a¬b

c

b

Figure 8.11: Intermediate step: ROBDD with
updated complements.

f

a

fa f¬a¬b

c

b

Figure 8.12: Final ROBDD.

	Title Page
	Table of Contents
	Binary Decision Diagrams
	Binary Decision Diagram
	Reduced Ordered BDDs
	Construction of Reduced Ordered BDDs

