Logic and Computability

Lecture 9

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Combinational Equivalence

MY HOBBY:
EMBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT (JRDERS

Checking

Bettina Kénighofer
bettina.koenighofer@iaik.tugraz.at

Stefan Pranger

|| MIXED FRUIT
FRENCH FRIES

SIDE 5ALAD

HoT WINGS
MOZZAREUA STIOKS
SAMPLER PLATE

¢ CHOTCHKIES RESTAURAWT

" APPENZERS ——

2.15
275
3.35
3.55
4.20
5.80

—— SANDVICHES ~—

WED LIKE EXACTLY §15. 05
WORTH OF APPETIZERS, PLEASE.
l L EXACTLY? UMK

HERE, THESE PAPERS ON THE KNAPSACK,
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIx OTHER
TABLES TO GET T0 =

~AS FRST AS POSSIBLE, (F (DURSE. WANT
SOMETHING ON TRAVELING SALESNANT /

\
(XITY

RARBF E

stefan.pranger@iaik.tugraz.at

https://xkcd.com/287/

£ BT

Motivation — Equivalence Checking

d r b t
AND
b

OR

AND

?
o LD

Motivation — Equivalence Checking

= Circuit Optimization and Synthesis Tools
= Big Market r
" Tools can make mistakes! b AND w

= Need to check for equivalence ~ s

AND

?
o Do

Motivation — Equivalence Checking

= Circuit Optimization and Synthesis Tools
= Big Market . r t
" Tools can make mistakes! b AND w

= Need to check for equivalence ~ s

AND

" Gives us a context to discuss basic topics

= Normal Forms (CNF, DNF) ?
= Relations between

= Satisfiability

= Validity

= Semantic Entailment
= Equivalence

d
= Tseitin Encoding b —,~ ’

Outline

Algorithm - Decide equivalence of combinational circuits
= Based on reduction to Satisfiability

Translation of a Circuit into a Formula

Relations between Satisfiability, Validity, Equivalence
and Semantic Entailment

Normal Forms

Tseitin Encoding

Algorithm - Circuit Equivalence via Truth Tables

" Using Truth Tables: Check for ¢ =y and Y = ¢ ?
i.e., ¢ and 1y are true for the same models
= Exponentially large
= - Not practicable!

Algorithm - Circuit Equivalence via Truth Tables

= Using Truth Tables: Check for ¢ =y and Y E ¢ ?
i.e., ¢ and 1y are true for the same models
= Exponentially large
= - Not practicable!

= Using Natural Deduction: Check for¢ -y and ¥ - ¢ ?
i.e., From ¢ we can prove 1 and vice versa
= Hard to automate (efficiently)
= - Not practicable!

Algorithm - Circuit Equivalence via Truth Tables

= Using Truth Tables: Check for ¢ =y and Y E ¢ ?
i.e., ¢ and 1y are true for the same models
= Exponentially large
= - Not practicable!

= Using Natural Deduction: Check for¢ -y and ¥ - ¢ ?
i.e., From ¢ we can prove 1 and vice versa
= Hard to automate (efficiently)
= - Not practicable!

= Better way: Reduction to SAT

Algorithm - Circuit Equivalence based on SAT

1. Encode C; and C, into two formulas ¢ ;{ and ¢ ,

Algorithm - Circuit Equivalence based on SAT

1. Encode C; and C, into two formulas ¢ ;{ and ¢ ,

2. Compute the Conjunctive Normal Form (CNF) of ¢ ;1 @ ¢,
Use Tseitin Encoding

Algorithm - Circuit Equivalence based on SAT

1. Encode C; and C, into two formulas ¢ ;{ and ¢ ,

2. Compute the Conjunctive Normal Form (CNF) of ¢ ;1 @ ¢,
Use Tseitin Encoding

3. Give CNF(p 1 @ @,) to a SAT solver

Algorithm - Circuit Equivalence based on SAT

1. Encode C; and C, into two formulas ¢ ;{ and ¢ ,

2. Compute the Conjunctive Normal Form (CNF) of ¢ ;1 D ¢,

= Use Tseitin Encoding

3. Give CNF(p 1 @ @,) to a SAT solver

4. €y and C, are equivalent if and only if CNF(p ; @ @,) is UNSAT

Algorithm - Circuit Equivalence based on SAT

";‘J AND o> @1 =-(aAb)A(aVhb)

AND

E : @, = (aAN-b)V(—aAb)

Circuits are equivalent < CNF(p; @ @-) is unsatisfiable.

\ J
|

Convert to CNF using Tseitin Encoding

Outline

= Translation of a Circuit into a Formula

= Relations between Satisfiability, Validity, Equivalence
and Semantic Entailment

= Normal Forms

Circuits are equivalent < CNF(p; @ @) is unsatisfiable.

= Tseitin Encoding ‘ , ’
Convert to CNF using Tseitin Encoding

Translation of a Circuit into a Formula

AND

Translation of a Circuit into a Formula

r t
AND b @1 =tAS

ANDJ— © =-rA(aVvh)
=—=(aAnb)A(aVDb)

p,=adb
=(aN-b)V (—-aAb)

Translation of a Circuit into a Formula

Lecture| Compute the propositional formula of the following circuit.
I I

w
j OR)
/ AND 0
” y
C NOT
H i

(l

2

Translation of a Circuit into a Formula

Lecture| Compute the propositional formula of the following circuit.
I proj

w
j OR)
/ AND 0
’ y
C NOT
H i

(l

2

z =y
= =(w A x)
= =((aVb)Aux)
= =((a Vb)A—c)

Outline

v

Relations between Satisfiability, Validity, Equivalence

and Semantic Entailment

= Normal Forms

= Tseitin Encoding

Circuits are equivalent < CNF(p; @ @) is unsatisfiable.

\ J
|

Convert to CNF using Tseitin Encoding

= Duality: Validity and Satisfiability

" ¢isvalid <~ ¢ is not satisfiable
¢ is satisfiable <~ - is not valid

= Duality: Validity and Satisfiability

" ¢isvalid <~ ¢ is not satisfiable
¢ is satisfiable <~ - is not valid

= Example:
= ¢ = (xV —x)isvalid. Truth Table: All rows T.

= Duality: Validity and Satisfiability

" ¢isvalid <~ ¢ is not satisfiable
¢ is satisfiable <~ - is not valid

= Example:

= ¢ = (xV —x)isvalid. Truth Table: All rows T.
= ¢ = =(x V —=x) = =x A x is not satisfiable. Truth Table: All rows F.

= Duality: Validity and Satisfiability

" ¢isvalid <~ ¢ is not satisfiable
¢ is satisfiable <~ - is not valid

= Example:

" ¢ = (xV —=x)isvalid. Truth Table: All rows T.
= ¢ = a(x Vax) = —x Ax is not satisfiable. Truth Table: All rows F.

= Only one decision procedure needed

Reductions

¢
satisfiable?
SRRy sa;ﬁigglte? ;/)a{t\is_fli:'fl}brl]eo’.g sd;tfzﬁtgbnlg:[?
validity | ¢ not valid? - Y valid? | ¢ © P valid?
Entailment T =g ? TH®? ¢1/|)_|ip£'?d
Equivalence pEL? dp=T7 dpoPY=T7

Outline

Normal Forms

Tseitin Encoding

v

Circuits are equivalent <~ CNF(@; @ @,) is unsatisfiable.

\ J
|

Convert to CNF using Tseitin Encoding

Terminology

= Literal: propositional variable or its negation
" Example: p, —q

= Clause: disjunction of literals
= Example:(pV=qVr)

= Cube: conjunction of literals
= Example: (=x Ay A —Zz)

Normal Forms

= Disjunctive Normal Form (DNF)
= Disjunction of cubes:

(a1 N a, JANRERIAN a?’l) V (bl Ao A bm) VTS
where each q;, bj is a literal

= Conjunctive Normal Form (CNF)
= Conjunction of clauses:

(a1 VvV a, VeV an) N\ (bl V-V bm) N -

where each a;, b; is a literal

= Ways to Obtain a CNF

= Via Truth Table
" Exponential size

= Via Replacement Rules, DeMorgan, Distributivity
" Exponential size

= Tseitin Encoding
= Use auxiliary variables
" Linear blow-up
" Produces equisatisfiable formula with linear blowup

Definition of Equisatisfiability

¢ and Y are equisatisfiable
either both satisfiable, or both unsatisfiable

" For equivalence checking, we only need the info SAT or UNSAT

Tseitin Encoding

= Stepl
= Assign new variables to all nodes in the parse tree / to each sub-formula
= Step?2

= Add new clauses for each new variable
= Apply Tseitin Rewrite Rules:

X (eVvy) & (V)N (Y VX)A(x Ve V)
X (@A) < (xVe)A(XVY)A(meV V)
X e & (x Vo) Ale V)

s Tseitin Encoding

Lecture| Apply Tseitin’s encoding to the following formula: @ = (pvg)AT)V-p | For
each variable you introduce, clearly indicate which subformula of ¢ it represents.

& (e VX)A(YVX)A (X Ve VD)
X (eAy) & (xVe)AXVY)A(meV V)
& (x Vo) A(p V)

sz Tseitin Encoding

Lecture| Apply Tseitin’s encoding to the following formula: @ = (pvg)AT)V-p | For
each variable you introduce, clearly indicate which subformula of ¢ it represents.

& (e VX)A (U VX)A (X Ve V)
X (@AY) & (xVe)A(x V) A(meV 9P Vx)
& (X V) AleVx)

CNF(p)= (—-pVz1)A(~qVz1)A(—-Z1VDPVQ)
IV q) A1) NV Tp A(—z2 Vi) A (22 AT)A (21 VTV
(pVaq)Ar) P (~z2 V1) A (=22 AT) A (=21 V =1 V 22)
1 3 A\ (ﬁ.'l.,'g V —")) A\ ([) V lf;)
T2 A(—z2Vzy)A(mz3VIy) A(zy VIV xs)
T NE

s Tseitin Encoding

[Lecture| Apply Tseitin’s encoding to the following formula: ¢ = —(a V —b) V (-a A ¢). For
each variable you introduce, clearly indicate which subformula of ¢ it represents.
& (V)AL VX)A (X Ve V)
X (pAY) & (xVe) A V) A (e V9 V)
& (Vo) Ale V)

s Tseitin Encoding

[Lecture| Apply Tseitin’s encoding to the following formula: ¢ = —(a V —b) V (-a A ¢). For
each variable you introduce, clearly indicate which subformula of ¢ it represents.

X (eVy) o (CeVX)A (Y VX)A (X Ve V)
X (eAY) & (xVe)A(x VYA (e Vg V)
X & (x Vo) Alp V)

—(aV b))V (naAe)

Ll
T €Ty
L] 1 1

€Ta €T
L I

1 CNF(p) =z,
T (ma1 V) A(mxe Vag) A(—xy, Vg Vias)A
(may V —ag) A (e V g)A
(maz Va) A (—x3 Vag) A(—aV -y Vias)A
(mx5 V) A (e V ag) A(—xs Vs Ve)A
(
(

—x4 V D) A (24 V D)A
-5V oa) A (x5 Voa)

Bl Derive Rewrite Rules

De-Morgan

" r<>(pAQ).. rewriteit toa CNF —~(aAb) = —aV b
—(aVb)=-aAN-b

Distributive Law

aV(bAc)=(aVvb)A(aVc)
aN(bVc)=(anb)V(aAc)

Bl Derive Rewrite Rules

De-Morgan

" r<>(pAQ).. rewriteit toa CNF —~(aAb) = —aV b
—(aVb)=-aAN-b

Distributive Law

"(r>pAadg)Alparg—r)

aV(bAc)=(aVvb)A(aVc)
aN(bVc)=(anb)V(aAc)

" (mrvipAag)A(=(lpag)vr)

" (arvp)A(=rvg)A(—pVv—=qgvr)

Derive Rewrite Rules

De-Morgan

" r<>(pvVvq)..rewriteittoa CNF —~(aAb) = —aV b
—(aVb)=-aAN-b

Distributive Law

aV(bAc)=(aVvb)A(aVc)
aN(bVc)=(anb)V(aAc)

Bl Derive Rewrite Rules

De-Morgan

" r<>(pvVvq)..rewriteittoa CNF —~(aAb) = —aV b
—(aVb)=-aAN-b

Distributive Law

* ((pvag)=>r)aA(r—>pva)

aV(bAc)=(aVvb)A(aVc)
aN(bVc)=(anb)V(aAc)

" ((pvag)vr)a(=rvpva)

" ((—pA=qg)Vvr)A(=rvpyva)

" (—pvr)A(=gVvr)A(=rvpva)

3 Tseitin Encoding

Lecture| Derive a Rewrite-Rule for an implication node, i.e., what clauses are introduced
by the node x < (p — q)7

De-Morgan

—(aAb)=-aV b
—(aVb)=-aN-b

Distributive Law

aV(bAc)=(aVvb)A(aVc)
aN(bvc)=(anb)V(aAc)

n Derive Rewrite Rules

Lecture| Derive a Rewrite-Rule for an implication node, i.e., what clauses are introduced
by the node x < (p — ¢)7
Solution:

S (p—=q)ers(p—q)
S—=pP—=q9)AN((p—q) —)
r—(—pVaq)A((—pVqg)— x)
—xV(=pVq))A(—(—pVqg) V)
xV-pVqg)A((—pA-q)Ve)
(pA—q) V)
(pVx)A(-qV))
pVax)A(—qVx)

A

A

xV-pVqg)A(
xV-pVaq) A
-V =pVq)A(

A

< (
(
(
(
(
(

(S R R

o Tseitin Encoding

Lecture| Explain the concept of equisatisfiability. Given a propositional logic formula ¢, the
Tseitin algorithm computes an equisatisfiable formula C'N F'(¢) in CNF. Why is this enough
for equivalence checking?

3 Tseitin Encoding

Lecture| Explain the concept of equisatisfiability. Given a propositional logic formula ¢, the
Tseitin algorithm computes an equisatisfiable formula C'N F'(¢) in CNF. Why is this enough
for equivalence checking?

Solution:

Two propositional formulas ¢ and 1) are equisatisfiable if and only it either both are
satisfiable or both are unsatisfiable.

When checking whether two formulas ¢ and @92 are equivalent we check whether ¢ =
1 B o is satisfiable. If ¢ is SAT we know that there is a model such that one of the input
formulas evaluated to true, while the other evaluated to false. The equisatisfiable formula
C'NF'(p) is satisfiable if and only if ¢ is satisfiable and therefore answers our question of
whether the two input formulas are equivalent.

k3 CEC Example

[Lecture] Check whether ¢; = a A =b and @2 = —(—a V b) are semantically equivalent using
the reduction to satisfiability. Prepare everything until you have a formula CNF(p), that

you can give to a SAT solver. .
(e VX)A (Y VX) A (=X Ve V)

& A (
X (eAY) o (X VE)A(XVY)A(meV V)
& (Vo) Ale Vx)

. CEC Example

[Lecture| Check whether ¢ = a A =b and @3 = —(—a V b) are semantically equivalent using
the reduction to satisfiability. Prepare everything until you have a formula CNF(p), that

you can give to a SAT solver.
X (eVy) o (CeVX)A(YVX)A (X Ve V)
X (pAY) & (xVO)A(Xx V) A (e V9 V)

© =1 Dp2
X & (x Vo) A(pVy)

= [p1 V2] A1 A o] =
[(@ A =b) V (=(=a Vb)) A =[(a A =b) A(~(—a Vb))

[(a./\p_lb)v(ﬁ(mvh))]/\ﬁ[(a.x\l—_.q)v(ﬁ(r_lavb))}

L0 Il L2 Ty

Ia Ira g g
|] L]
€Is £y
1 1 1]
Iy L3

Ty

E CEC Example

[Lecture| Check whether ¢ = a A =b and @3 = —(—a V b) are semantically equivalent using
the reduction to satisfiability. Prepare everything until you have a formula CNF(p), that

you can give to a SAT solver.

X (eVve) & (oVX)A (Y VX)A (X Ve VY)
X (@Ay) & (xVe)AXVYP)A(meV V)
X e & (Vo) A(p Vi)
© = p1D 2
= |1 V p2] A1 Apo] = CNF(p) = z,A
= [(a A=b) V (~(=a V)] A =[(a A=b) A (~(=a Vb)) (mi5) V 0) A (2 V 9) A (i1 V2 V)
(mz1 V xe) A (21 V 22)A
[(aALb) V(= (F_G.Vb))] A= [(a/\l—l_lb) V(= (F_“.Vb))] (73 Vo) A (mzg Vi) A (2 Vg Vg A
z7 g 7 s (mx3Va)A(—xsVar)A(—aV —xy V)N
1 | I— 1 | I—
z3 | Z6 | z3 | Ze | (—'334 V _'.CEG) N (334 V 3‘5‘6)/\
, T4 C ra : (mxg Vag) A (b V xg) A (mx6 Vg V bH)A
o . i : (mx7 V —b) A (27 V D)A
| - | (mzg V —a) A (zg V a)A

Outline

v

Tseitin Encoding ‘/

v

Circuits are equivalent <~ CNF(@; @ @,) is unsatisfiable.

\)
|

Convert to CNF using Tseitin Encoding

Learning Targets [%
= Explain the algorithm to check for equivalence
based on the reduction to SAT

= Understand the notions between satisfiability, validity,
equivalence and semantic entailment

= Understand the CNF and DNF normal form

= Construct them using truth tables

= Apply Tseitin‘s algorithm to construct formulas in CNF
* Understand the concept of equisatisfiability

Thank YoL

https://xkcd.com/1033/

