Logic and Computability

Lecture 9

SCIENCE PASSION TECHNOLOGY

Combinational Equivalence MY HOBBY: Checking

EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES R	-		
APPETIZER			
MIXED FRUIT	2.15		
FRENCH FRIES	2.75		
SIDE SALAD	3.35		
HOT WINGS	3.55		50
MOZZARELLA STICKS	4.20		
SAMPLER PLATE	5. 8 0		
- SANDWICHES			
RARBECUE	6 55		



Bettina Könighofer

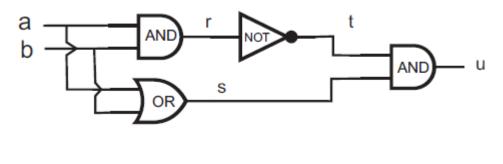
Stefan Pranger

stefan.pranger@iaik.tugraz.at

bettina.koenighofer@iaik.tugraz.at

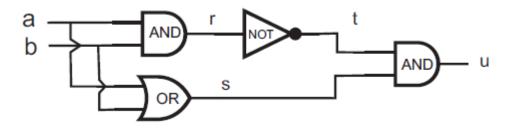
https://xkcd.com/287/

Motivation – Equivalence Checking



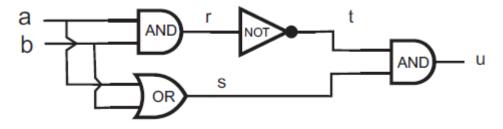
Motivation – Equivalence Checking

- Circuit Optimization and Synthesis Tools
 - Big Market
 - Tools can make mistakes!
 - Need to check for equivalence



Motivation – Equivalence Checking

- Circuit Optimization and Synthesis Tools
 - Big Market
 - Tools can make mistakes!
 - Need to check for equivalence
- Gives us a context to discuss basic topics
 - Normal Forms (CNF, DNF)
 - Relations between
 - Satisfiability
 - Validity
 - Semantic Entailment
 - Equivalence
 - Tseitin Encoding



- Algorithm Decide equivalence of combinational circuits
 - Based on reduction to Satisfiability
- Translation of a Circuit into a Formula
- Relations between Satisfiability, Validity, Equivalence and Semantic Entailment
- Normal Forms
- Tseitin Encoding

Algorithm - Circuit Equivalence via Truth Tables

- Using Truth Tables: Check for $\phi \models \psi$ and $\psi \models \phi$?
 - i.e., ϕ and ψ are true for the same models
 - Exponentially large
 - \rightarrow Not practicable!

Algorithm - Circuit Equivalence via Truth Tables

• Using Truth Tables: Check for $\phi \models \psi$ and $\psi \models \phi$?

i.e., ϕ and ψ are true for the same models

- Exponentially large
- \rightarrow Not practicable!
- Using Natural Deduction: Check for $\phi \vdash \psi$ and $\psi \vdash \phi$? i.e., From ϕ we can prove ψ and vice versa
 - Hard to automate (efficiently)
 - \rightarrow Not practicable!

Algorithm - Circuit Equivalence via Truth Tables

• Using Truth Tables: Check for $\phi \models \psi$ and $\psi \models \phi$?

i.e., ϕ and ψ are true for the same models

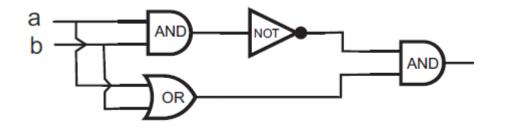
- Exponentially large
- \rightarrow Not practicable!
- Using Natural Deduction: Check for $\phi \vdash \psi$ and $\psi \vdash \phi$? i.e., From ϕ we can prove ψ and vice versa
 - Hard to automate (efficiently)
 - \rightarrow Not practicable!
- Better way: Reduction to SAT

1. Encode C_1 and C_2 into two formulas φ_1 and φ_2

- 1. Encode C_1 and C_2 into two formulas φ_1 and φ_2
- 2. Compute the Conjunctive Normal Form (CNF) of $\varphi_1 \oplus \varphi_2$
 - Use Tseitin Encoding

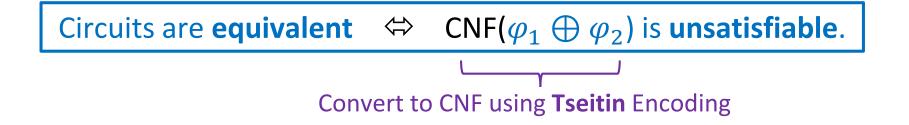
- 1. Encode C_1 and C_2 into two formulas φ_1 and φ_2
- 2. Compute the Conjunctive Normal Form (CNF) of $\varphi_1 \oplus \varphi_2$
 - Use Tseitin Encoding
- 3. Give $CNF(\varphi_1 \oplus \varphi_2)$ to a **SAT solver**

- 1. Encode C_1 and C_2 into two formulas φ_1 and φ_2
- 2. Compute the Conjunctive Normal Form (CNF) of $\varphi_1 \oplus \varphi_2$
 - Use Tseitin Encoding
- 3. Give $CNF(\varphi_1 \oplus \varphi_2)$ to a **SAT solver**
- 4. C_1 and C_2 are **equivalent** if and only if $CNF(\varphi_1 \bigoplus \varphi_2)$ is **UNSAT**



$$\varphi_1 = \neg(a \land b) \land (a \lor b)$$

$$\varphi_2 = (a \land \neg b) \lor (\neg a \land b)$$

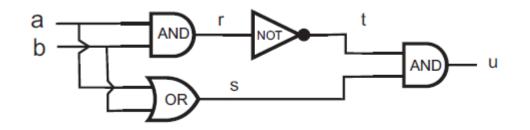


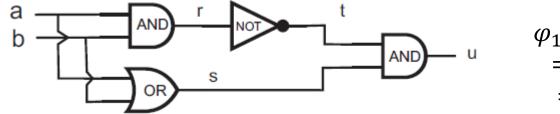
Outline

- Algorithm Decide equivalence of combinational circuits
 - Based on reduction to Satisfiability
- Translation of a Circuit into a Formula
- Relations between Satisfiability, Validity, Equivalence and Semantic Entailment
- Normal Forms
- Tseitin Encoding

Circuits are equivalent \Leftrightarrow CNF($\varphi_1 \oplus \varphi_2$) is unsatisfiable.

Convert to CNF using **Tseitin** Encoding



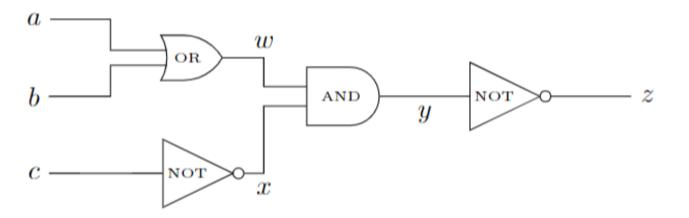


$$\begin{aligned} \varphi_1 &= t \wedge s \\ &= \neg r \wedge (a \lor b) \\ &= \neg (a \land b) \wedge (a \lor b) \end{aligned}$$

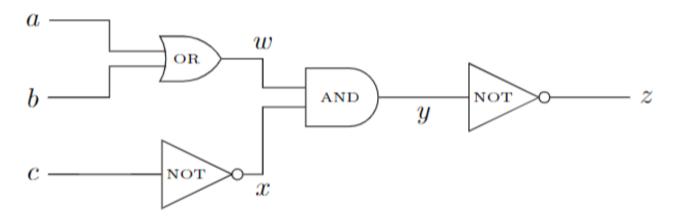
$$\varphi_2 = a \oplus b$$

= $(a \land \neg b) \lor (\neg a \land b)$

[Lecture] Compute the propositional formula of the following circuit.



[Lecture] Compute the propositional formula of the following circuit.



$$z = \neg y$$

= $\neg (w \land x)$
= $\neg ((a \lor b) \land x)$
= $\neg ((a \lor b) \land \neg c)$

Outline

- Algorithm Decide equivalence of combinational circuits
 - Based on reduction to Satisfiability
- Translation of a Circuit into a Formula
- Relations between Satisfiability, Validity, Equivalence and Semantic Entailment
- Normal Forms
- Tseitin Encoding

Circuits are equivalent \Leftrightarrow CNF($\varphi_1 \oplus \varphi_2$) is unsatisfiable.

Convert to CNF using **Tseitin** Encoding

• ϕ is valid $\Leftrightarrow \neg \phi$ is not satisfiable ϕ is satisfiable $\Leftrightarrow \neg \phi$ is not valid

- ϕ is valid $\Leftrightarrow \neg \phi$ is not satisfiable ϕ is satisfiable $\Leftrightarrow \neg \phi$ is not valid
- Example:
 - $\phi = (x \lor \neg x)$ is valid.

Truth Table: All rows **T**.

- ϕ is valid $\Leftrightarrow \neg \phi$ is not satisfiable ϕ is satisfiable $\Leftrightarrow \neg \phi$ is not valid
- Example:
 - $\phi = (x \lor \neg x)$ is valid. Truth Table: All rows **T**.
 - $\neg \phi = \neg (x \lor \neg x) \equiv \neg x \land x$ is not satisfiable. Truth Table: All rows **F**.

- ϕ is valid $\Leftrightarrow \neg \phi$ is not satisfiable ϕ is satisfiable $\Leftrightarrow \neg \phi$ is not valid
- Example:
 - $\phi = (x \lor \neg x)$ is valid. Truth Table: All rows **T**.
 - $\neg \phi = \neg (x \lor \neg x) \equiv \neg x \land x$ is not satisfiable. Truth Table: All rows **F**.
- Only one decision procedure needed

Reductions

Solve using	ϕ satisfiable?	ϕ valid?	$\phi \vdash \psi$?	$\phi\equiv\psi$?
Satisfiability	\checkmark	<i>¬</i> ¢ not satisfiable?	$\phi \wedge \neg \psi$ not satisfiable?	$\phi \oplus \psi$ not satisfiable?
Validity	$\neg \phi$ not valid?		$\phi ightarrow \psi$ valid?	$\phi \leftrightarrow \psi$ valid?
Entailment	⊤⊬¬ ¢ ?	$\top \vdash \phi$?		$\phi \vdash \psi$ and $\psi \vdash \phi$?
Equivalence	$\phi ot\equiv \perp ?$	$\phi \equiv op$?	$\phi ightarrow \psi \equiv op ?$	\checkmark

24

Outline

- Algorithm Decide equivalence of combinational circuits
 - Based on reduction to Satisfiability
- Translation of a Circuit into a Formula
- Relations between Satisfiability, Validity, Equivalence and Semantic Entailment
- Normal Forms
- Tseitin Encoding

Circuits are equivalent \Leftrightarrow CNF($\varphi_1 \oplus \varphi_2$) is unsatisfiable.

Convert to CNF using **Tseitin** Encoding

Terminology

- Literal: propositional variable or its negation
 - Example: p, $\neg q$
- Clause: disjunction of literals
 - Example: $(p \lor \neg q \lor r)$
- Cube: conjunction of literals
 - Example: $(\neg x \land y \land \neg z)$

Normal Forms

- Disjunctive Normal Form (DNF)
 - Disjunction of cubes:

 $(a_1 \wedge a_2 \wedge \cdots \wedge a_n) \vee (b_1 \wedge \cdots \wedge b_m) \vee \cdots$

where each a_i , b_j is a literal

- Conjunctive Normal Form (CNF)
 - Conjunction of clauses:

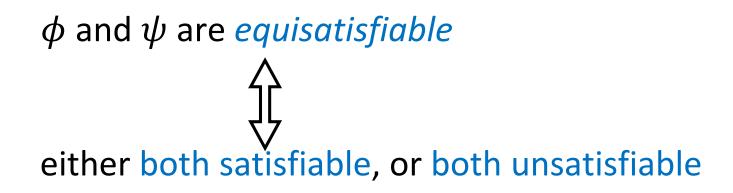
$$(a_1 \lor a_2 \lor \cdots \lor a_n) \land (b_1 \lor \cdots \lor b_m) \land \cdots$$

where each a_i , b_j is a literal

Ways to Obtain a CNF

- Via Truth Table
 - Exponential size
- Via Replacement Rules, DeMorgan, Distributivity
 - Exponential size
- Tseitin Encoding
 - Use auxiliary variables
 - Linear blow-up
 - Produces equisatisfiable formula with linear blowup

Definition of Equisatisfiability



For equivalence checking, we only need the info SAT or UNSAT

Tseitin Encoding

- Step 1
 - Assign new variables to all nodes in the parse tree / to each sub-formula
- Step 2
 - Add new clauses for each new variable
 - Apply Tseitin Rewrite Rules:

$$\begin{array}{lll} \chi \leftrightarrow (\varphi \lor \psi) & \Leftrightarrow & (\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi) \\ \chi \leftrightarrow (\varphi \land \psi) & \Leftrightarrow & (\neg \chi \lor \varphi) \land (\neg \chi \lor \psi) \land (\neg \varphi \lor \neg \psi \lor \chi) \\ \chi \leftrightarrow \neg \varphi & \Leftrightarrow & (\neg \chi \lor \neg \varphi) \land (\varphi \lor \chi) \end{array}$$

³¹ Tseitin Encoding

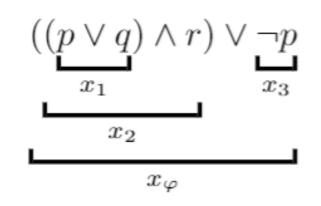
[Lecture] Apply Tseitin's encoding to the following formula: $\varphi = ((p \lor q) \land r) \lor \neg p$. For each variable you introduce, clearly indicate which subformula of φ it represents.

> $\chi \leftrightarrow (\varphi \lor \psi) \quad \Leftrightarrow \quad (\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi)$ $\chi \leftrightarrow (\varphi \land \psi) \quad \Leftrightarrow \quad (\neg \chi \lor \varphi) \land (\neg \chi \lor \psi) \land (\neg \varphi \lor \neg \psi \lor \chi)$ $\chi \leftrightarrow \neg \varphi \quad \Leftrightarrow \quad (\neg \chi \lor \neg \varphi) \land (\varphi \lor \chi)$

³² Tseitin Encoding

[Lecture] Apply Tseitin's encoding to the following formula: $\varphi = ((p \lor q) \land r) \lor \neg p$. For each variable you introduce, clearly indicate which subformula of φ it represents.

> $\chi \leftrightarrow (\varphi \lor \psi) \quad \Leftrightarrow \quad (\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi)$ $\chi \leftrightarrow (\varphi \land \psi) \quad \Leftrightarrow \quad (\neg \chi \lor \varphi) \land (\neg \chi \lor \psi) \land (\neg \varphi \lor \neg \psi \lor \chi)$ $\chi \leftrightarrow \neg \varphi \quad \Leftrightarrow \quad (\neg \chi \lor \neg \varphi) \land (\varphi \lor \chi)$



$$CNF(\varphi) = (\neg p \lor x_1) \land (\neg q \lor x_1) \land (\neg x_1 \lor p \lor q)$$

$$\land (\neg x_2 \lor x_1) \land (\neg x_2 \land r) \land (\neg x_1 \lor \neg r \lor x_2)$$

$$\land (\neg x_3 \lor \neg p) \land (p \lor x_3)$$

$$\land (\neg x_2 \lor x_{\varphi}) \land (\neg x_3 \lor x_{\varphi}) \land (\neg x_{\varphi} \lor x_2 \lor x_3)$$

$$\land x_{\varphi}$$

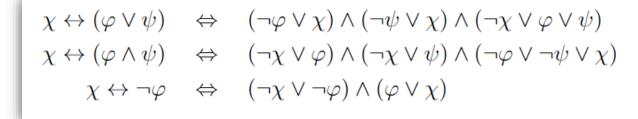
³³ Tseitin Encoding

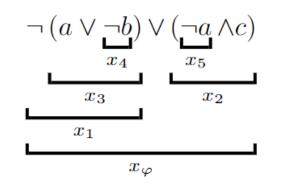
[Lecture] Apply Tseitin's encoding to the following formula: $\varphi = \neg (a \lor \neg b) \lor (\neg a \land c)$. For each variable you introduce, clearly indicate which subformula of φ it represents.

$$\begin{array}{lll} \chi \leftrightarrow (\varphi \lor \psi) & \Leftrightarrow & (\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi) \\ \chi \leftrightarrow (\varphi \land \psi) & \Leftrightarrow & (\neg \chi \lor \varphi) \land (\neg \chi \lor \psi) \land (\neg \varphi \lor \neg \psi \lor \chi) \\ \chi \leftrightarrow \neg \varphi & \Leftrightarrow & (\neg \chi \lor \neg \varphi) \land (\varphi \lor \chi) \end{array}$$

³⁴ Tseitin Encoding

[Lecture] Apply Tseitin's encoding to the following formula: $\varphi = \neg(a \lor \neg b) \lor (\neg a \land c)$. For each variable you introduce, clearly indicate which subformula of φ it represents.





$$CNF(\varphi) = x_{\varphi} \land (\neg x_1 \lor x_{\varphi}) \land (\neg x_2 \lor x_{\varphi}) \land (\neg x_{\varphi} \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_3 \lor x_4) \land (\neg a \lor \neg x_4 \lor x_3) \land (\neg x_5 \lor x_2) \land (\neg c \lor x_2) \land (\neg x_2 \lor x_5 \lor c) \land (\neg x_4 \lor \neg b) \land (x_4 \lor b) \land (\neg x_5 \lor \neg a) \land (x_5 \lor a)$$

Derive Rewrite Rules

• $\mathbf{r} \leftrightarrow (\mathbf{p} \land \mathbf{q})$... rewrite it to a CNF

De-Morgan

 $\neg (a \land b) \equiv \neg a \lor \neg b$ $\neg (a \lor b) \equiv \neg a \land \neg b$

Distributive Law

 $a \lor (b \land c) \equiv (a \lor b) \land (a \lor c)$ $a \land (b \lor c) \equiv (a \land b) \lor (a \land c)$

Derive Rewrite Rules

- $r \leftrightarrow (p \land q)$... rewrite it to a CNF
- $(r \rightarrow p \land q) \land (p \land q \rightarrow r)$
- $(\neg r \lor (p \land q)) \land (\neg (p \land q) \lor r)$
- $(\neg r \lor p) \land (\neg r \lor q) \land (\neg p \lor \neg q \lor r)$

De-Morgan

 $\neg (a \land b) \equiv \neg a \lor \neg b$ $\neg (a \lor b) \equiv \neg a \land \neg b$

Distributive Law

 $a \lor (b \land c) \equiv (a \lor b) \land (a \lor c)$ $a \land (b \lor c) \equiv (a \land b) \lor (a \land c)$

³⁷ Derive Rewrite Rules

• $r \leftrightarrow (p \lor q)$... rewrite it to a CNF

De-Morgan

 $\neg (a \land b) \equiv \neg a \lor \neg b$ $\neg (a \lor b) \equiv \neg a \land \neg b$

Distributive Law

 $a \lor (b \land c) \equiv (a \lor b) \land (a \lor c)$ $a \land (b \lor c) \equiv (a \land b) \lor (a \land c)$

Derive Rewrite Rules

- $r \leftrightarrow (p \lor q)$... rewrite it to a CNF
- $((p \lor q) \rightarrow r) \land (r \rightarrow p \lor q)$
- $(\neg(p \lor q) \lor r) \land (\neg r \lor p \lor q)$
- $((\neg p \land \neg q) \lor r) \land (\neg r \lor p \lor q)$
- $(\neg p \lor r) \land (\neg q \lor r) \land (\neg r \lor p \lor q)$

De-Morgan

 $\neg (a \land b) \equiv \neg a \lor \neg b$ $\neg (a \lor b) \equiv \neg a \land \neg b$

Distributive Law

 $a \lor (b \land c) \equiv (a \lor b) \land (a \lor c)$ $a \land (b \lor c) \equiv (a \land b) \lor (a \land c)$

³⁹ Tseitin Encoding

[Lecture] Derive a Rewrite-Rule for an implication node, i.e., what clauses are introduced by the node $x \leftrightarrow (p \rightarrow q)$?

 $a \rightarrow b \equiv \neg a \lor b$ De-Morgan $\neg (a \land b) \equiv \neg a \lor \neg b$ $\neg (a \lor b) \equiv \neg a \land \neg b$

Distributive Law

 $a \lor (b \land c) \equiv (a \lor b) \land (a \lor c)$ $a \land (b \lor c) \equiv (a \land b) \lor (a \land c)$

⁴⁰ Derive Rewrite Rules

[Lecture] Derive a Rewrite-Rule for an implication node, i.e., what clauses are introduced by the node $x \leftrightarrow (p \rightarrow q)$? Solution:

$$\begin{aligned} x \leftrightarrow (p \rightarrow q) \Leftrightarrow x \leftrightarrow (p \rightarrow q) \\ \Leftrightarrow (x \rightarrow (p \rightarrow q)) \land ((p \rightarrow q) \rightarrow x) \\ \Leftrightarrow (x \rightarrow (\neg p \lor q)) \land ((\neg p \lor q) \rightarrow x) \\ \Leftrightarrow (\neg x \lor (\neg p \lor q)) \land (\neg (\neg p \lor q) \lor x) \\ \Leftrightarrow (\neg x \lor \neg p \lor q) \land ((\neg \neg p \land \neg q) \lor x) \\ \Leftrightarrow (\neg x \lor \neg p \lor q) \land ((p \land \neg q) \lor x) \\ \Leftrightarrow (\neg x \lor \neg p \lor q) \land ((p \lor x) \land (\neg q \lor x)) \\ \Leftrightarrow (\neg x \lor \neg p \lor q) \land (p \lor x) \land (\neg q \lor x) \end{aligned}$$

⁴¹ Tseitin Encoding

[Lecture] Explain the concept of equisatisfiability. Given a propositional logic formula φ , the Tseitin algorithm computes an equisatisfiable formula $CNF(\varphi)$ in CNF. Why is this enough for equivalence checking?

⁴² Tseitin Encoding

[Lecture] Explain the concept of equisatisfiability. Given a propositional logic formula φ , the Tseitin algorithm computes an equisatisfiable formula $CNF(\varphi)$ in CNF. Why is this enough for equivalence checking?

Solution:

Two propositional formulas φ and ψ are *equisatisfiable* if and only if either *both are satisfiable* or *both are unsatisfiable*.

When checking whether two formulas φ_1 and φ_2 are equivalent we check whether $\varphi = \varphi_1 \oplus \varphi_2$ is satisfiable. If φ is *SAT* we know that there is a model such that one of the input formulas evaluated to true, while the other evaluated to false. The equisatisfiable formula $CNF(\varphi)$ is satisfiable if and only if φ is satisfiable and therefore answers our question of whether the two input formulas are equivalent.

⁴³ CEC Example

[Lecture] Check whether $\varphi_1 = a \land \neg b$ and $\varphi_2 = \neg(\neg a \lor b)$ are semantically equivalent using the reduction to satisfiability. Prepare everything until you have a formula $CNF(\varphi)$, that you can give to a SAT solver.

 $\chi \leftrightarrow (\varphi \lor \psi) \quad \Leftrightarrow \quad (\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi)$ $\chi \leftrightarrow (\varphi \wedge \psi) \quad \Leftrightarrow \quad (\neg \chi \vee \varphi) \wedge (\neg \chi \vee \psi) \wedge (\neg \varphi \vee \neg \psi \vee \chi)$ $\chi \leftrightarrow \neg \varphi \quad \Leftrightarrow \quad (\neg \chi \vee \neg \varphi) \land (\varphi \vee \chi)$

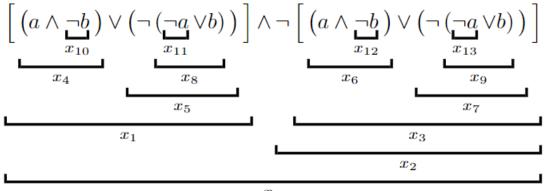
CEC Example

44

[Lecture] Check whether $\varphi_1 = a \land \neg b$ and $\varphi_2 = \neg(\neg a \lor b)$ are semantically equivalent using the reduction to satisfiability. Prepare everything until you have a formula $CNF(\varphi)$, that you can give to a SAT solver.

$$\begin{split} \varphi &= \varphi_1 \oplus \varphi_2 \\ &= [\varphi_1 \vee \varphi_2] \wedge \neg [\varphi_1 \wedge \varphi_2] = \\ &= [(a \wedge \neg b) \vee (\neg (\neg a \vee b))] \wedge \neg [(a \wedge \neg b) \wedge (\neg (\neg a \vee b))] \end{split}$$

 $\begin{array}{lll} \chi \leftrightarrow (\varphi \lor \psi) & \Leftrightarrow & (\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi) \\ \chi \leftrightarrow (\varphi \land \psi) & \Leftrightarrow & (\neg \chi \lor \varphi) \land (\neg \chi \lor \psi) \land (\neg \varphi \lor \neg \psi \lor \chi) \\ \chi \leftrightarrow \neg \varphi & \Leftrightarrow & (\neg \chi \lor \neg \varphi) \land (\varphi \lor \chi) \end{array}$



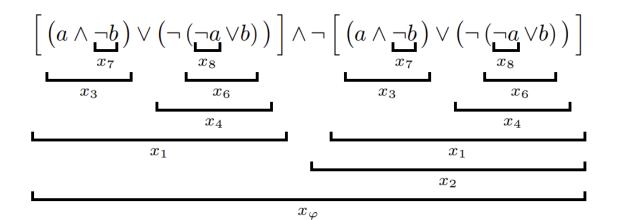
 x_{φ}

CEC Example

[Lecture] Check whether $\varphi_1 = a \land \neg b$ and $\varphi_2 = \neg(\neg a \lor b)$ are semantically equivalent using the reduction to satisfiability. Prepare everything until you have a formula $\text{CNF}(\varphi)$, that you can give to a SAT solver.

$$= \varphi_1 \oplus \varphi_2$$

= $[\varphi_1 \lor \varphi_2] \land \neg [\varphi_1 \land \varphi_2] =$
= $[(a \land \neg b) \lor (\neg (\neg a \lor b))] \land \neg [(a \land \neg b) \land (\neg (\neg a \lor b))]$



$$\begin{array}{lll} \chi \leftrightarrow (\varphi \lor \psi) & \Leftrightarrow & (\neg \varphi \lor \chi) \land (\neg \psi \lor \chi) \land (\neg \chi \lor \varphi \lor \psi) \\ \chi \leftrightarrow (\varphi \land \psi) & \Leftrightarrow & (\neg \chi \lor \varphi) \land (\neg \chi \lor \psi) \land (\neg \varphi \lor \neg \psi \lor \chi) \\ \chi \leftrightarrow \neg \varphi & \Leftrightarrow & (\neg \chi \lor \neg \varphi) \land (\varphi \lor \chi) \end{array}$$

$$CNF(\varphi) = x_{\varphi} \land \\ (\neg x_{\varphi} \lor x_{1}) \land (\neg x_{\varphi} \lor x_{2}) \land (\neg x_{1} \lor \neg x_{2} \lor x_{\varphi}) \land \\ (\neg x_{1} \lor \neg x_{2}) \land (x_{1} \lor x_{2}) \land \end{cases}$$

$$(\neg x_3 \lor x_1) \land (\neg x_4 \lor x_1) \land (\neg x_1 \lor x_3 \lor x_4) \land$$

 $(\neg x_3 \lor a) \land (\neg x_3 \lor x_7) \land (\neg a \lor \neg x_7 \lor x_3) \land$

 $(\neg x_4 \lor \neg x_6) \land (x_4 \lor x_6) \land$

$$(\neg x_8 \lor x_6) \land (\neg b \lor x_6) \land (\neg x_6 \lor x_8 \lor b) \land$$

$$(\neg x_7 \lor \neg b) \land (x_7 \lor b) \land$$

 $(\neg x_8 \lor \neg a) \land (x_8 \lor a) \land$

 φ

Outline

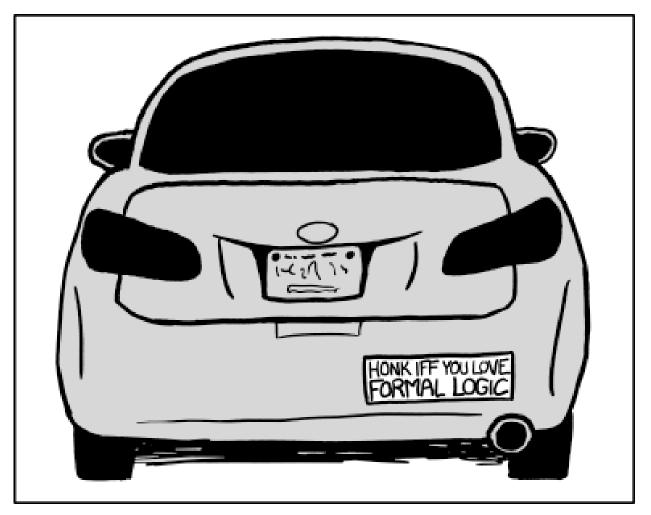
- Algorithm Decide equivalence of combinational circuits
 - Based on reduction to Satisfiability
- Translation of a Circuit into a Formula
- Relations between Satisfiability, Validity, Equivalence and Semantic Entailment
- Normal Forms
- Tseitin Encoding

Circuits are equivalent \Leftrightarrow CNF($\varphi_1 \oplus \varphi_2$) is unsatisfiable.

Convert to CNF using Tseitin Encoding

Learning Targets

- Explain the algorithm to check for equivalence based on the reduction to SAT
- Understand the notions between satisfiability, validity, equivalence and semantic entailment
- Understand the CNF and DNF normal form
 - Construct them using truth tables
- Apply Tseitin's algorithm to construct formulas in CNF
 - Understand the concept of equisatisfiability



https://xkcd.com/1033/