
Bettina Könighofer
bettina.koenighofer@iaik.tugraz.at

Logic and Computability
Lecture 9

Combinational Equivalence
Checking g

Stefan Pranger
stefan.pranger@iaik.tugraz.at

https://xkcd.com/287/

2

Motivation – Equivalence Checking

=
?

▪ Circuit Optimization and Synthesis Tools
▪ Big Market
▪ Tools can make mistakes!
▪ Need to check for equivalence

3

Motivation – Equivalence Checking

=
?

▪ Circuit Optimization and Synthesis Tools
▪ Big Market
▪ Tools can make mistakes!
▪ Need to check for equivalence

▪ Gives us a context to discuss basic topics
▪ Normal Forms (CNF, DNF)
▪ Relations between

▪ Satisfiability
▪ Validity
▪ Semantic Entailment
▪ Equivalence

▪ Tseitin Encoding

4

Motivation – Equivalence Checking

=
?

Outline
5

▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Translation of a Circuit into a Formula

▪ Relations between Satisfiability, Validity, Equivalence
and Semantic Entailment

▪ Normal Forms

▪ Tseitin Encoding

6

▪ Using Truth Tables: Check for 𝜙 ⊨ 𝜓 and 𝜓 ⊨ 𝜙 ?
i. e., 𝜙 and 𝜓 are true for the same models

▪ Exponentially large
▪ → Not practicable!

Algorithm - Circuit Equivalence via Truth Tables

7

▪ Using Truth Tables: Check for 𝜙 ⊨ 𝜓 and 𝜓 ⊨ 𝜙 ?
i. e., 𝜙 and 𝜓 are true for the same models

▪ Exponentially large
▪ → Not practicable!

▪ Using Natural Deduction: Check for 𝜙 ⊢ 𝜓 and 𝜓 ⊢ 𝜙 ?
i. e. , From 𝜙 we can prove 𝜓 and vice versa

▪ Hard to automate (efficiently)
▪ → Not practicable!

Algorithm - Circuit Equivalence via Truth Tables

8

▪ Using Truth Tables: Check for 𝜙 ⊨ 𝜓 and 𝜓 ⊨ 𝜙 ?
i. e., 𝜙 and 𝜓 are true for the same models

▪ Exponentially large
▪ → Not practicable!

▪ Using Natural Deduction: Check for 𝜙 ⊢ 𝜓 and 𝜓 ⊢ 𝜙 ?
i. e. , From 𝜙 we can prove 𝜓 and vice versa

▪ Hard to automate (efficiently)
▪ → Not practicable!

▪ Better way: Reduction to SAT

Algorithm - Circuit Equivalence via Truth Tables

9

1. Encode 𝐶1 and 𝐶2 into two formulas 𝜑 1 and 𝜑 2

Algorithm - Circuit Equivalence based on SAT

10

1. Encode 𝐶1 and 𝐶2 into two formulas 𝜑 1 and 𝜑 2

2. Compute the Conjunctive Normal Form (CNF) of 𝜑 1 ⊕𝜑2
▪ Use Tseitin Encoding

Algorithm - Circuit Equivalence based on SAT

11

1. Encode 𝐶1 and 𝐶2 into two formulas 𝜑 1 and 𝜑 2

2. Compute the Conjunctive Normal Form (CNF) of 𝜑 1 ⊕𝜑2
▪ Use Tseitin Encoding

3. Give CNF(𝜑 1 ⊕𝜑2) to a SAT solver

Algorithm - Circuit Equivalence based on SAT

12

1. Encode 𝐶1 and 𝐶2 into two formulas 𝜑 1 and 𝜑 2

2. Compute the Conjunctive Normal Form (CNF) of 𝜑 1 ⊕𝜑2
▪ Use Tseitin Encoding

3. Give CNF(𝜑 1 ⊕𝜑2) to a SAT solver

4. 𝐶1 and 𝐶2 are equivalent if and only if CNF(𝜑 1 ⊕𝜑2) is UNSAT

Algorithm - Circuit Equivalence based on SAT

13

𝜑1 = ¬ 𝑎 ∧ 𝑏 ∧ 𝑎 ∨ 𝑏

𝜑2 = 𝑎 ∧ ¬𝑏 ∨ ¬𝑎 ∧ 𝑏

Circuits are equivalent  CNF(𝜑1 ⊕𝜑2) is unsatisfiable.

Convert to CNF using Tseitin Encoding

Algorithm - Circuit Equivalence based on SAT

Outline
14

▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Translation of a Circuit into a Formula

▪ Relations between Satisfiability, Validity, Equivalence
and Semantic Entailment

▪ Normal Forms

▪ Tseitin Encoding
Circuits are equivalent  CNF(𝜑1 ⊕𝜑2) is unsatisfiable.

Convert to CNF using Tseitin Encoding

15

Translation of a Circuit into a Formula

16

Translation of a Circuit into a Formula

𝜑1 = 𝑡 ∧ 𝑠
= ¬𝑟 ∧ (𝑎 ∨ 𝑏)
= ¬ 𝑎 ∧ 𝑏 ∧ 𝑎 ∨ 𝑏

𝜑2 = 𝑎⊕ 𝑏
= 𝑎 ∧ ¬𝑏 ∨ ¬𝑎 ∧ 𝑏

17

Translation of a Circuit into a Formula

18

Translation of a Circuit into a Formula

Outline
19

▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Translation of a Circuit into a Formula

▪ Relations between Satisfiability, Validity, Equivalence
and Semantic Entailment

▪ Normal Forms

▪ Tseitin Encoding
Circuits are equivalent  CNF(𝜑1 ⊕𝜑2) is unsatisfiable.

Convert to CNF using Tseitin Encoding

Duality: Validity and Satisfiability
20

▪ 𝝓 is valid  ¬𝝓 is not satisfiable
𝝓 is satisfiable  ¬𝝓 is not valid

Duality: Validity and Satisfiability
21

▪ 𝝓 is valid  ¬𝝓 is not satisfiable
𝝓 is satisfiable  ¬𝝓 is not valid

▪ Example:
▪ 𝜙 = (𝑥 ∨ ¬𝑥) is valid. Truth Table: All rows T.

Duality: Validity and Satisfiability
22

▪ 𝝓 is valid  ¬𝝓 is not satisfiable
𝝓 is satisfiable  ¬𝝓 is not valid

▪ Example:
▪ 𝜙 = (𝑥 ∨ ¬𝑥) is valid. Truth Table: All rows T.
▪ ¬𝜙 = ¬ 𝑥 ∨ ¬𝑥 ≡ ¬𝑥 ∧ 𝑥 is not satisfiable. Truth Table: All rows F.

Duality: Validity and Satisfiability
23

▪ 𝝓 is valid  ¬𝝓 is not satisfiable
𝝓 is satisfiable  ¬𝝓 is not valid

▪ Example:
▪ 𝜙 = (𝑥 ∨ ¬𝑥) is valid. Truth Table: All rows T.
▪ ¬𝜙 = ¬ 𝑥 ∨ ¬𝑥 ≡ ¬𝑥 ∧ 𝑥 is not satisfiable. Truth Table: All rows F.

▪ Only one decision procedure needed

Reductions
24

Solve

satisfiable?
valid? ? ?

not

satisfiable?

not

satisfiable?

not

satisfiable?

not valid? valid? valid?

? ?
and

?

using

Satisfiability

Validity

Entailment

Equivalence ? ? ?

Outline
25

▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Translation of a Circuit into a Formula

▪ Relations between Satisfiability, Validity, Equivalence
and Semantic Entailment

▪ Normal Forms

▪ Tseitin Encoding
Circuits are equivalent  CNF(𝜑1 ⊕𝜑2) is unsatisfiable.

Convert to CNF using Tseitin Encoding

Terminology
26

▪ Literal: propositional variable or its negation
▪ Example: 𝑝, ¬𝑞

▪ Clause: disjunction of literals
▪ Example: 𝑝 ∨ ¬𝑞 ∨ 𝑟

▪ Cube: conjunction of literals
▪ Example: ¬𝑥 ∧ 𝑦 ∧ ¬𝑧

Normal Forms
27

▪ Disjunctive Normal Form (DNF)
▪ Disjunction of cubes:

𝑎1 ∧ 𝑎2 ∧ ⋯∧ 𝑎𝑛 ∨ 𝑏1 ∧ ⋯∧ 𝑏𝑚 ∨ ⋯

where each 𝑎𝑖 , 𝑏𝑗 is a literal

▪ Conjunctive Normal Form (CNF)
▪ Conjunction of clauses:

𝑎1 ∨ 𝑎2 ∨ ⋯∨ 𝑎𝑛 ∧ 𝑏1 ∨ ⋯∨ 𝑏𝑚 ∧ ⋯

where each 𝑎𝑖 , 𝑏𝑗 is a literal

Ways to Obtain a CNF
28

▪ Via Truth Table
▪ Exponential size

▪ Via Replacement Rules, DeMorgan, Distributivity
▪ Exponential size

▪ Tseitin Encoding
▪ Use auxiliary variables
▪ Linear blow-up
▪ Produces equisatisfiable formula with linear blowup

29

𝜙 and 𝜓 are equisatisfiable

either both satisfiable, or both unsatisfiable

▪ For equivalence checking, we only need the info SAT or UNSAT

Definition of Equisatisfiability

30

▪ Step 1
▪ Assign new variables to all nodes in the parse tree / to each sub-formula

▪ Step 2
▪ Add new clauses for each new variable
▪ Apply Tseitin Rewrite Rules:

Tseitin Encoding

31 Tseitin Encoding
𝜑 = (𝑝 ∨ 𝑞 ∧ 𝑟) ∨ ¬𝑝

32 Tseitin Encoding
𝜑 = (𝑝 ∨ 𝑞 ∧ 𝑟) ∨ ¬𝑝

33 Tseitin Encoding

34 Tseitin Encoding

35 Derive Rewrite Rules

▪ r (p  q) … rewrite it to a CNF

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏 ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏 ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐

36 Derive Rewrite Rules

▪ r (p  q) … rewrite it to a CNF

▪ (r→ p  q)  (p  q → r)

▪ (r  (p  q))  ((p  q)  r)

▪ (r  p)  (r  q)  (p   q  r)

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏 ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏 ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐

37 Derive Rewrite Rules

▪ r (p  q) … rewrite it to a CNF

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏 ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏 ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐

38 Derive Rewrite Rules

▪ r (p  q) … rewrite it to a CNF

▪ ((p  q)→ r)  (r→ p  q)

▪ ((p  q)  r)  (r  p  q)

▪ ((p   q)  r)  (r  p  q)

▪ (p  r)  ( q  r)  (r  p  q)

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏 ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏 ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐

39 Tseitin Encoding

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏 ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏 ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐

40 Derive Rewrite Rules

41 Tseitin Encoding

42 Tseitin Encoding

43 CEC Example

44 CEC Example

45 CEC Example

Outline
46

▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Translation of a Circuit into a Formula

▪ Relations between Satisfiability, Validity, Equivalence
and Semantic Entailment

▪ Normal Forms

▪ Tseitin Encoding
Circuits are equivalent  CNF(𝜑1 ⊕𝜑2) is unsatisfiable.

Convert to CNF using Tseitin Encoding

Learning Targets
47

▪ Explain the algorithm to check for equivalence
based on the reduction to SAT

▪ Understand the notions between satisfiability, validity,
equivalence and semantic entailment

▪ Understand the CNF and DNF normal form
▪ Construct them using truth tables

▪ Apply Tseitin‘s algorithm to construct formulas in CNF
▪ Understand the concept of equisatisfiability

Thank You

48

48

https://xkcd.com/1033/

