
Bettina Könighofer 
bettina.koenighofer@iaik.tugraz.at

Logic and Computability
Lecture 9

Combinational Equivalence
Checking                               g                            

Stefan Pranger
stefan.pranger@iaik.tugraz.at

https://xkcd.com/287/



2

Motivation – Equivalence Checking

=
?



▪ Circuit Optimization and Synthesis Tools
▪ Big Market
▪ Tools can make mistakes!
▪ Need to check for equivalence
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▪ Gives us a context to discuss basic topics
▪ Normal Forms (CNF, DNF)
▪ Relations between 

▪ Satisfiability
▪ Validity
▪ Semantic Entailment
▪ Equivalence

▪ Tseitin Encoding
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▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Translation of a Circuit into a Formula

▪ Relations between Satisfiability, Validity, Equivalence 
and Semantic Entailment

▪ Normal Forms

▪ Tseitin Encoding
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▪ Using Truth Tables: Check for 𝜙 ⊨ 𝜓 and 𝜓 ⊨ 𝜙 ? 
i. e., 𝜙 and 𝜓 are true for the same models

▪ Exponentially large 
▪ → Not practicable!

Algorithm - Circuit Equivalence via Truth Tables
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▪ Using Truth Tables: Check for 𝜙 ⊨ 𝜓 and 𝜓 ⊨ 𝜙 ? 
i. e., 𝜙 and 𝜓 are true for the same models

▪ Exponentially large 
▪ → Not practicable!

▪ Using Natural Deduction: Check for 𝜙 ⊢ 𝜓 and 𝜓 ⊢ 𝜙 ? 
i. e. , From 𝜙 we can prove 𝜓 and vice versa

▪ Hard to automate (efficiently)
▪ → Not practicable!

▪ Better way: Reduction to SAT

Algorithm - Circuit Equivalence via Truth Tables
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1. Encode 𝐶1 and 𝐶2 into two formulas 𝜑 1 and 𝜑 2

Algorithm - Circuit Equivalence based on SAT 
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1. Encode 𝐶1 and 𝐶2 into two formulas 𝜑 1 and 𝜑 2

2. Compute the Conjunctive Normal Form (CNF) of 𝜑 1 ⊕𝜑2
▪ Use Tseitin Encoding

3. Give CNF(𝜑 1 ⊕𝜑2) to a SAT solver

4. 𝐶1 and 𝐶2 are equivalent if and only if CNF(𝜑 1 ⊕𝜑2)  is UNSAT

Algorithm - Circuit Equivalence based on SAT 
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𝜑1 = ¬ 𝑎 ∧ 𝑏 ∧ 𝑎 ∨ 𝑏

𝜑2 = 𝑎 ∧ ¬𝑏 ∨ ¬𝑎 ∧ 𝑏

Circuits are equivalent  CNF(𝜑1 ⊕𝜑2) is unsatisfiable.

Convert to CNF using Tseitin Encoding

Algorithm - Circuit Equivalence based on SAT 
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▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Translation of a Circuit into a Formula

▪ Relations between Satisfiability, Validity, Equivalence 
and Semantic Entailment

▪ Normal Forms

▪ Tseitin Encoding
Circuits are equivalent  CNF(𝜑1 ⊕𝜑2) is unsatisfiable.

Convert to CNF using Tseitin Encoding
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Translation of a Circuit into a Formula
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Translation of a Circuit into a Formula

𝜑1 = 𝑡 ∧ 𝑠
= ¬𝑟 ∧ (𝑎 ∨ 𝑏)
= ¬ 𝑎 ∧ 𝑏 ∧ 𝑎 ∨ 𝑏

𝜑2 = 𝑎⊕ 𝑏
= 𝑎 ∧ ¬𝑏 ∨ ¬𝑎 ∧ 𝑏
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Translation of a Circuit into a Formula
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▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Translation of a Circuit into a Formula

▪ Relations between Satisfiability, Validity, Equivalence 
and Semantic Entailment

▪ Normal Forms

▪ Tseitin Encoding
Circuits are equivalent  CNF(𝜑1 ⊕𝜑2) is unsatisfiable.

Convert to CNF using Tseitin Encoding
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▪ 𝝓 is valid                ¬𝝓 is not satisfiable
𝝓 is satisfiable  ¬𝝓 is not valid
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▪ 𝝓 is valid                ¬𝝓 is not satisfiable
𝝓 is satisfiable  ¬𝝓 is not valid

▪ Example:
▪ 𝜙 = (𝑥 ∨ ¬𝑥) is valid.                                            Truth Table: All rows T.
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▪ 𝝓 is valid                ¬𝝓 is not satisfiable
𝝓 is satisfiable  ¬𝝓 is not valid

▪ Example:
▪ 𝜙 = (𝑥 ∨ ¬𝑥) is valid.                                            Truth Table: All rows T.
▪ ¬𝜙 = ¬ 𝑥 ∨ ¬𝑥 ≡ ¬𝑥 ∧ 𝑥 is not satisfiable. Truth Table: All rows F.



Duality: Validity and Satisfiability
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▪ 𝝓 is valid                ¬𝝓 is not satisfiable
𝝓 is satisfiable  ¬𝝓 is not valid

▪ Example:
▪ 𝜙 = (𝑥 ∨ ¬𝑥) is valid.                                            Truth Table: All rows T.
▪ ¬𝜙 = ¬ 𝑥 ∨ ¬𝑥 ≡ ¬𝑥 ∧ 𝑥 is not satisfiable. Truth Table: All rows F.

▪ Only one decision procedure needed 



Reductions
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Solve

satisfiable?
valid? ? ?

not

satisfiable?

not 

satisfiable?

not 

satisfiable?

not valid? valid? valid?

? ?
and

?

using

Satisfiability

Validity

Entailment

Equivalence ? ? ?
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▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Translation of a Circuit into a Formula

▪ Relations between Satisfiability, Validity, Equivalence 
and Semantic Entailment

▪ Normal Forms

▪ Tseitin Encoding
Circuits are equivalent  CNF(𝜑1 ⊕𝜑2) is unsatisfiable.

Convert to CNF using Tseitin Encoding
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▪ Literal: propositional variable or its negation
▪ Example: 𝑝, ¬𝑞

▪ Clause: disjunction of literals
▪ Example: 𝑝 ∨ ¬𝑞 ∨ 𝑟

▪ Cube: conjunction of literals
▪ Example: ¬𝑥 ∧ 𝑦 ∧ ¬𝑧



Normal Forms
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▪ Disjunctive Normal Form (DNF)
▪ Disjunction of cubes:

𝑎1 ∧ 𝑎2 ∧ ⋯∧ 𝑎𝑛 ∨ 𝑏1 ∧ ⋯∧ 𝑏𝑚 ∨ ⋯

where each 𝑎𝑖 , 𝑏𝑗 is a literal

▪ Conjunctive Normal Form (CNF)
▪ Conjunction of clauses:

𝑎1 ∨ 𝑎2 ∨ ⋯∨ 𝑎𝑛 ∧ 𝑏1 ∨ ⋯∨ 𝑏𝑚 ∧ ⋯

where each 𝑎𝑖 , 𝑏𝑗 is a literal



Ways to Obtain a CNF
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▪ Via Truth Table
▪ Exponential size

▪ Via Replacement Rules, DeMorgan, Distributivity
▪ Exponential size

▪ Tseitin Encoding
▪ Use auxiliary variables
▪ Linear blow-up
▪ Produces equisatisfiable formula with linear blowup
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𝜙 and 𝜓 are equisatisfiable

either both satisfiable, or both unsatisfiable

▪ For equivalence checking, we only need the info SAT or UNSAT

Definition of Equisatisfiability
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▪ Step 1
▪ Assign new variables to all nodes in the parse tree / to each sub-formula

▪ Step 2 
▪ Add new clauses for each new variable
▪ Apply Tseitin Rewrite Rules:

Tseitin Encoding



31 Tseitin Encoding
𝜑 = ( 𝑝 ∨ 𝑞 ∧ 𝑟) ∨ ¬𝑝
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35 Derive Rewrite Rules

▪ r (p  q) … rewrite it to a CNF  

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏 ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏 ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐
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▪ (r  p )  (r  q)  (p   q  r)
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38 Derive Rewrite Rules

▪ r (p  q) … rewrite it to a CNF  

▪ ((p  q)→ r)  (r→ p  q) 

▪ ((p  q)  r)  (r  p  q)

▪ ((p   q)  r)  (r  p  q)

▪ (p  r)  (  q  r)  (r  p  q)

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏 ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏 ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐



39 Tseitin Encoding

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏 ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏 ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐



40 Derive Rewrite Rules



41 Tseitin Encoding



42 Tseitin Encoding



43 CEC Example



44 CEC Example



45 CEC Example



Outline
46

▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Translation of a Circuit into a Formula

▪ Relations between Satisfiability, Validity, Equivalence 
and Semantic Entailment

▪ Normal Forms

▪ Tseitin Encoding
Circuits are equivalent  CNF(𝜑1 ⊕𝜑2) is unsatisfiable.

Convert to CNF using Tseitin Encoding



Learning Targets
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▪ Explain the algorithm to check for equivalence
based on the reduction to SAT

▪ Understand the notions between satisfiability, validity, 
equivalence and semantic entailment

▪ Understand the CNF and DNF normal form 
▪ Construct them using truth tables

▪ Apply Tseitin‘s algorithm to construct formulas in CNF 
▪ Understand the concept of equisatisfiability



Thank You
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