Logic and Computability

SCIENCE
PASSION
TECHNOLOGY

Binary Decision Diagrams (BDDs)

Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at

Stefan Pranger
stefan.pranger@iaik.tugraz.at

Motivation - BDDs

- Efficient Representation of Boolean Formulas
- Small for many practical cases
- Efficient Manipulation
- Boolean Operations

Outline

- What are Binary Decision Diagrams (BDDs)?
- Intuitive Explanation
- Formal Definition
- From BDDs to Reduced Ordered BDDs (ROBDDs)
- Construct Formula from ROBDD
- Construct ROBDD from Formula
- Pros and Cons of BDDs

Binary Decision Diagram (BDD)

Binary Decision Diagram (BDD)

Binary Decision Diagram (BDD)

Find the formula f that is represented by this BDD:

$$
\begin{gathered}
f:=(a \wedge b \wedge c) \vee(a \wedge b \wedge \neg c \wedge d) \vee \\
(a \wedge \neg b \wedge d) \vee(\neg a \wedge b \wedge d) \vee(\neg a \wedge \neg b \wedge c \wedge d)
\end{gathered}
$$

Binary Decision Diagram (BDD)

BDD with Complimented Edges

BDD with Complimented and dangling Edges

From now on....

Definition of BDDs

- Directed Acyclic Graph
- $(V \cup \Phi \cup\{\mathbf{1}\}, E)$
- Internal Nodes $v \in V$
- Function Nodes $f_{i} \in \Phi$
- Terminal Node 1
- Edges E
- "Complement" attribute

Definition of BDDs: Internal Node

- Label $l(v) \in\left\{x_{1}, \ldots, x_{n}\right\}$
- Variables of f
- Out-degree: 2
- Then-Edge T
- Else-Edge E
- Marked with (empty) circle
- Can have complement attribute
 (full cycle)

Definition of BDDs: Function Node

- Represents Boolean Formula f_{i}
- In-degree: 0
- Out-degree: 1
- Edge can have complement attribute

Definition of BDDs: Terminal Node

- Constant Function True
- Out-degree: 0

Outline

- What are Binary Decision Diagrams (BDDs)?
- Intuitive Explanation
- Formal Definition
- From BDDs to Reduced Ordered BDDs (ROBDDs)
- Construct Formula from ROBDD
- Construct ROBDD from Formula
- Pros and Cons of BDDs

From BDD to Reduced BDD

1. No duplicate sub-BDDs

From BDD to Reduced BDD

1. No duplicate sub-BDDs
f
2. No redundant nodes

Reduced BDD

From BDD to Reduced BDD

1. No duplicate sub-BDDs \square

Reduced BDD

2. No redundant nodes

Redundant
(special case)

From RBDD to Reduced Ordered BDD (ROBDD)

- Ordering on the variables along any path
- E.g., $a<b<c<d$
- A ROBDD gives a canonical representation of a formula
- For given variable ordering
- Meaning:
- If two formulas are semantically equivalent, they will be represented by the exact same ROBDD
- Allows Equivalence Checking

in constant time

Outline

- What are Binary Decision Diagrams (BDDs)?
- Intuitive Explanation
- Formal Definition
- From BDDs to Reduced Ordered BDDs (ROBDDs)
- Construct Formula from ROBDD \square
- Construct ROBDD from Formula
- Pros and Cons of BDDs

From ROBDD to Formula, Example 1

From ROBDD to Formula, Example 2

To obtain a formula in DNF:

- Enumerate all paths with an even number of negations (full cycles)

$$
f=(x \wedge z) \vee(\neg x \wedge y) \vee(\neg x \wedge \neg y \wedge \neg z)
$$

Outline

- What are Binary Decision Diagrams (BDDs)?
- Intuitive Explanation
- Formal Definition
- From BDDs to Reduced Ordered BDDs (ROBDDs)
- Construct Formula from ROBDD
- Construct ROBDD from Formula
- Pros and Cons of BDDs

From Formula to BDD

1. Compute all Cofactors
2. Draw ROBDD from Cofactors
3. Shift Negations Upwards

From Formula to BDD - Step 1: Cofactors

- Boolean formula f w.r.t. a variable x
- Positive Cofactor $f_{x}: f$ with x set to T
- Negative Cofactor $f_{\neg x}: f$ with x set to \perp
- Example:

$$
\begin{aligned}
& f=(x \wedge y) \vee(\neg x \wedge z) \\
& \quad f_{x}=y \\
& \quad f_{\neg x}=z
\end{aligned}
$$

Example: From Formula to BDD

$$
f=(a \wedge b \vee \neg a) \wedge \neg c \wedge d \vee c
$$

$$
\begin{gathered}
f_{a}=b \wedge \neg c \wedge d \vee c \\
f_{a b}=\neg c \wedge d \vee c \\
f_{a b c}=\top \\
f_{a b \neg c}=d \\
f_{a b \neg c d}=\top \\
f_{a b \neg c \neg d}=\perp \\
f_{a \neg b}=c \\
f_{a \neg b c}=\top \\
f_{a \neg b \neg c}=\perp \\
f_{\neg a}=\neg c \wedge d \vee c=f_{a b}
\end{gathered}
$$

w From Formula to BDD Step 3: Shift Negations Upwards

${ }_{28}$ From Formula to BDD -
Step 3: Shift Negations Upwards

${ }_{29}$ From Formula to BDD -
Step 3: Shift Negations Upwards

From Formula to BDD -
Step 3: Shift Negations Upwards

${ }_{31}$ From Formula to BDD -
Step 3: Shift Negations Upwards

Example: From Formula to BDD

$$
f=(a \wedge \neg c) \vee(\neg a \wedge(b \vee(\neg b \wedge c)))
$$

$$
\begin{aligned}
& f_{a}=\neg c \\
& f_{a c}=\perp \\
& f_{a \neg c}=\mathrm{T} \\
& f_{\neg a}=b \vee(\neg b \wedge c) \\
& f_{\neg a b}=\mathrm{T} \\
& f_{\neg a \neg b}=c=\neg f_{a}
\end{aligned}
$$

Example: From Formula to BDD

Example: From Formula to BDD

[Lecture] Construct a ROBDD for the following formula using alphabethic ordering:

$$
\begin{gathered}
f=(a \wedge b) \vee \neg a \vee(c \leftrightarrow d) \\
f_{a}=b \vee(c \leftrightarrow d) \\
f_{a b}=\top \\
f_{a \neg b}=c \leftrightarrow d \\
f_{a \neg b c}=d \\
f_{a \neg b c d}=\top \\
f_{a \neg b c \neg d}=\perp \\
f_{a \neg b \neg c}=\neg d=f_{a b c} \\
f_{\neg a}=\top
\end{gathered}
$$

Example: From Formula to BDD

[Lecture] Construct a ROBDD for the following formula using alphabethic ordering:

$$
f=(r \wedge p) \vee(\neg r \wedge \neg p) \vee(s \wedge \neg r) \vee(\neg s \wedge r) \vee(\neg r \wedge q)
$$

$$
f_{p}=r \vee(s \wedge \neg r) \vee(\neg s \wedge r) \vee(\neg r \wedge q)
$$

$$
f_{p q}=r \vee(s \wedge \neg r) \vee(\neg s \wedge r) \vee \neg r=\top
$$

$$
f_{p \neg q}=r \vee(s \wedge \neg r) \vee(\neg s \wedge r)
$$

$$
f_{p \neg q r}=\top
$$

$$
f_{p \neg q \neg r}=s
$$

$$
f_{p \neg q \neg r s}=\top
$$

$$
f_{p \neg q \neg r \neg s}=\perp
$$

$$
f_{\neg p}=\neg r \vee(s \wedge \neg r) \vee(\neg s \wedge r) \vee(\neg r \wedge q)
$$

$$
=\neg r \vee(s \wedge \neg r) \vee(\neg s \wedge r)
$$

$$
f_{\neg p r}=\neg s=f_{p \neg q \neg r}
$$

$$
f_{\neg p \neg r}=\top
$$

Example: From BDD to Formula

[Lecture] Given the Binary Decision Diagram (BDD) below. Construct the formula f in disjunctive normal form (DNF) that is represented by the BDD.

Solution:

$$
\begin{gathered}
f=(a \wedge b \wedge c) \vee(a \wedge \neg b \wedge e) \vee(a \wedge b \wedge \neg c \wedge \neg e) \vee(\neg a \wedge \neg c \wedge d) \vee \\
(\neg a \wedge c \wedge \neg e) \vee(\neg a \wedge \neg c \wedge d \wedge e)
\end{gathered}
$$

Outline

- What are Binary Decision Diagrams (BDDs)?
- Intuitive Explanation
- Formal Definition

- From BDDs to Reduced Ordered BDDs (ROBDDs)
- Construct Formula from ROBDD
- Construct ROBDD from Formula
- Pros and Cons of BDDs

Advantages / Disadvantages of BDDs

+ Size-Efficiency
- Worst case: exponential
- Often: BDDs contain a lot of redundancy. Eliminating redundancy results in small BDD
+ Efficient Operations
- e.g. AND, OR: Polynomial time
- Equivalence Check: Constant time
- Satisfiability and Validity Check: Constant Time
- Variable order
- Big impact
- Hard to optimize

Thank You

