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Motivation — Natural Deduction

" Formalize Structure of Reasoning
= Reasoning rules
= Purely typographical / syntactic Rules
= Deduce new knowledge
" From given premises we deduce the conclusion

= Advantages
= Watertight” Proofs
= Automatically checkable
= Automation for proof generation

= Basis for “Real Proofs”



Motivation
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Motivation
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Motivation
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Outline

= Proof Rules
= |ntroduction Rules
= Elimination Rules

= Soundness and Completeness
» Proof the invalidity of sequences via counter examples
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= Example 1

[Lecture| Give the definition of a sequent. Give an example of a sequent and name the parts
the sequent consists of.

A sequent is an expression of the form

1, ¥25:45 Pn - ly/)

D1, P2,..., pn are called premises. ¢ is called the conclusion.
The premises entail the conclusion. This means that for any valid sequence, we can proof
that the conclusion follows from the premises.




Example 2

[Lecture| Look at the following statements and tick them if they are true.

I In a sequent, premises entail a conclusion.
L] In a sequent, conclusions entail a premise.
L] A sequent is valid, if no proof for it can be found.

X A sequent is valid, if a proof for it can be found.



B8 Proof Rules

Propositional Logic
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Rules for Conjunction
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Proofs

p.q = pAq

L. p prem.
2. ¢ prem.
3. pAg AN11.2
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Rules for Double Negation

Elimination
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Example 3

[LECtUI'e] D /\ q, r }— r /\ =D A —q
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Rules for Implication - Elimination

Elimination
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Lecture ), P > @, p 2> (@ > 7) T
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Example 5
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Example 6
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Rules for Implication

Elimination
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Example 7

Lecture| p >q,q >1r+ p—or
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Example 8
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Rules for Disjunction - Introduction
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Example 9

[Lecturel pAg,r —s F (pV(r—=3s)A(qV((tVr)— u))

NS ks

pPAq

r— s

P

pV (r—s)

q

gV ((tVr)—u)
(pV(r—s)A(gV((EVr)—u)

prem.
prem.
Nel 1
Vil 3
Ne2 1
Vil
Al 4.6



Rules for Disjunction
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Example
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Example 10
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Rules for Negation

Elimination

Rule for L - Elimination
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Other Rules

Law-of-the-Excluded-Middle Rule Copy-Rule
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[Lecture| P

Example 11
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Example 12 e
[Lecture] —p = —q,q F p L B -
1. —p — —g  prem.
2. q prem.
3. =P ass.
4. —q —e 3,1
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Example 13
[Lecture] = p — (q — p)
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Example 14
Lecture] F ((p—q) —p) —p
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Example 15
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Example 16

Lecture| pV ——q, - pA—-qg F sVt
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= Example 17

Lecturel p—q F —pVyq
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Example 18
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Example 19
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Tips for Deduction

= Work from both sides

" Look at the conclusion
" |fitis of the form @ — Y, apply immediately — i
" |fitis of the form =, apply immediately =i

= |If you get stuck
" Try case splits: LEM
= Try proof by contradiction



Outline

= Proof Rules «

= |ntroduction Rules
= Elimination Rules

= Soundness and Completeness
» Proof the invalidity of sequences via counter examples



SO un d Ness (“Korrektheit”)

= Definition

¢1' ¢2' L ¢n - II) = ¢1' ¢2' ""¢n F ¢

" Meaning
= Every provable sequent is a correct semantic entailment.
" |ncorrect entailments are not provable.

- ¢1r ¢2' "'r¢n B& l/) = ¢1, ¢2' ""¢n |7L 1/J



Completeness (volstsndigkeit)

= Definition

¢1' ¢2' r ¢n = II) = ¢1' ¢2;

" Meaning
= Every correct semantic entailment has a proof.
= Unprovable sequents are incorrect entailments.

- ¢1r ¢2, "'r¢n |7L l/) = ¢1, ¢2' ""¢n B& 1/1

y Pn =P



= Example 20

[Lecture| "Natural deduction for propositional logic is sound and complete.” Explain in your
own words what this means.

Soundness

Natural deduction for propositional logic is sound. Therefore, any sequent that
can be proven is a correct semantic entailment.

Ol- @2’---3(/577, l_ (L/) é ol‘,@Q?"’ﬂqbﬂ. bl//‘

So, if we have proven with natural deduction that a sequent ¢y, ¢s,..., ¢, is
valid, then for all valuations in which all premises ¢, ¢o, ..., ¢,, evaluate to true,
1 evaluates to true as well.

Completeness

Natural deduction for propositional logic is sound. Therefore, any sequent that
1$ a correct semantic entailment can be proven.

D1, P2y, O E Y = O1, Oa,..., On U



Invalid Sequents

"pVqrFpAQ?

* Model M: p=T q=F
s M EpVg but MEDPAQ

" M satisfies all premises
= M does not satisfy the conclusion

» Therefore, M is a counterexample!

= This proves: pVgH¥ pAgq



Example 21

[Lecture] How can you show that a sequent is not valid? Is this a consequence of soundness
or completeness. Explain your answer.

To show that a sequent is invalid, we need to find a counter example. A counter
example is a model, that satisfies all premises but falsifies the conclusion.



- Example 22

Lecture| p =+ q,qg > r + .

This sequent is not provable,
M:p=Fqg=Fr=1F
MEp—=q,q—r

MFEr




- Example 23

[Lecture| Translate the following reasoning into a sequent. If the sequent is valid, proof it
using the rules of natural deduction. If the sequent is not valid, provide a counter example.

If I press the button, the window opens.
The window is open.
Therefore, I pressed the button.



= Example 23

[Lecture| Translate the following reasoning into a sequent. If the sequent is valid, proof it
using the rules of natural deduction. If the sequent is not valid, provide a counter example.

Translation:
p: Press button.
q: Open window.

If I press the button, the window opens. p — ¢
The window is open. q
Therefore, I pressed the button. Fp

sequent: p—q,qbp

This sequent is not provable.
M:p=Fq=1T
MEp—q,q

MFEp



Learning Targets e
= 0

" Perform deduction proofs or find a counterexample for sequents
" Check or find errors in a given deduction proof

" Explain “soundness” and “completeness”
= Of natural deduction for propositional logic
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