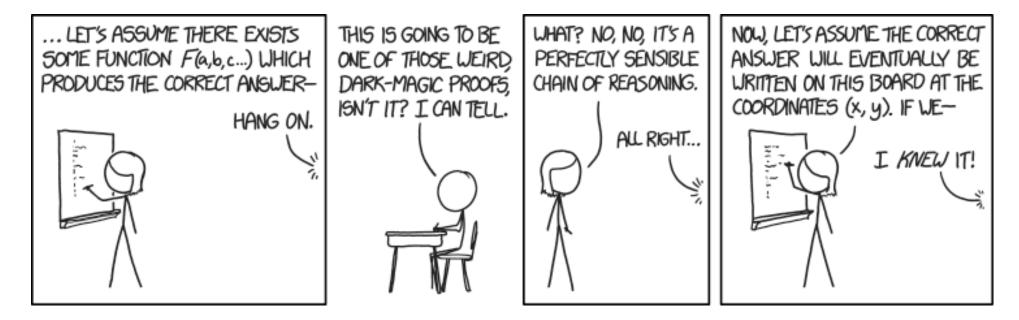
Logic and Computability Lecture 4 Natural Deduction

SCIENCE PASSION TECHNOLOGY



Stefan Pranger

stefan.pranger@iaik.tugraz.at

Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at

https://xkcd.com/1724/

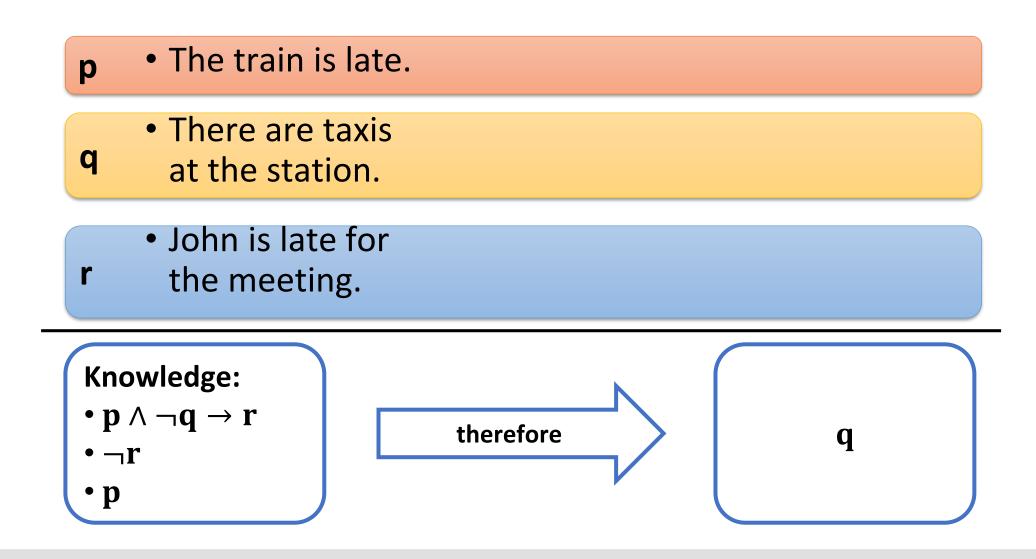
Motivation – Natural Deduction

- Formalize Structure of Reasoning
 - Reasoning rules
 - Purely typographical / syntactic Rules
 - Deduce new knowledge
 - From given premises we deduce the conclusion
- Advantages
 - Watertight" Proofs
 - Automatically checkable
 - Automation for proof generation
- Basis for "Real Proofs"

Motivation

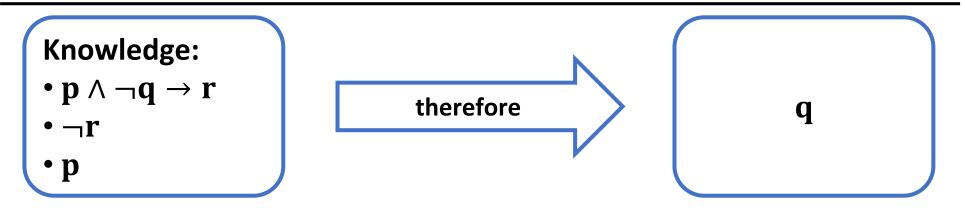
- **p** The train is late.
 - There are taxis
- **q** at the station.
 - John is late for
- **r** the meeting.

Motivation



Motivation

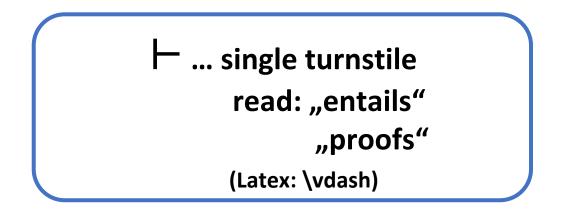
р	• The train is late.	 Max is registered for LuB.
q	 There are taxis at the station. 	 Max passes the exam.
r	 John is late for the meeting. 	 Max gets a negative grade.



Outline

- Proof Rules
 - Introduction Rules
 - Elimination Rules
- Soundness and Completeness
 - Proof the invalidity of sequences via counter examples

 $\phi_1, \phi_2, \dots, \phi_n \vdash$ **Conclusion Premises**



[Lecture] Give the definition of a sequent. Give an example of a sequent and name the parts the sequent consists of.

A sequent is an expression of the form

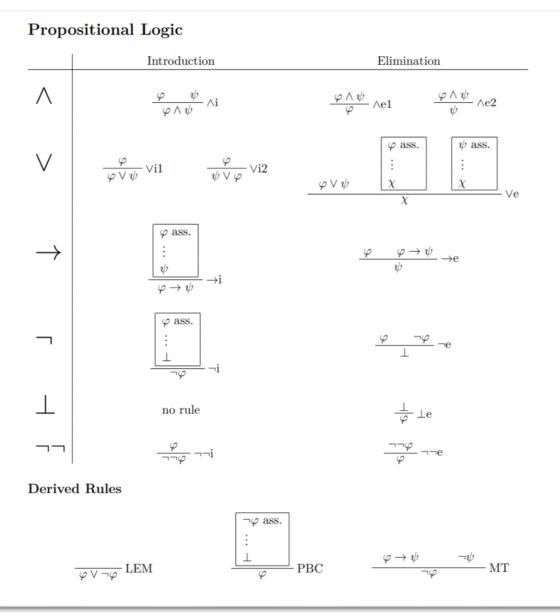
 $\varphi_1, \varphi_2, ..., \varphi_n \vdash \psi.$

 $\varphi_1, \varphi_2, \dots, \varphi_n$ are called premises. ψ is called the conclusion. The premises entail the conclusion. This means that for any valid sequence, we can proof that the conclusion follows from the premises.

[Lecture] Look at the following statements and tick them if they are true.

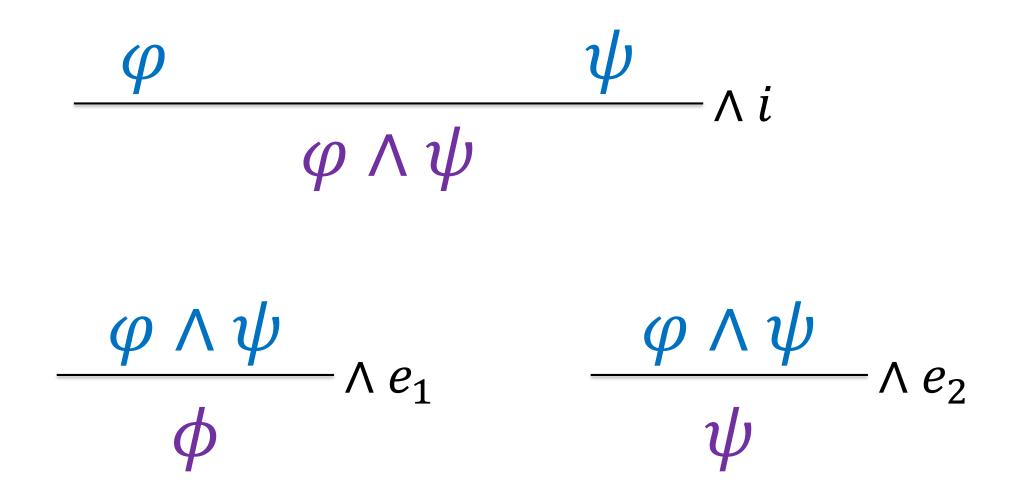
- $\boxtimes~$ In a sequent, premises entail a conclusion.
- $\hfill\square$ In a sequent, conclusions entail a premise.
- \Box A sequent is valid, if no proof for it can be found.
- \boxtimes A sequent is valid, if a proof for it can be found.

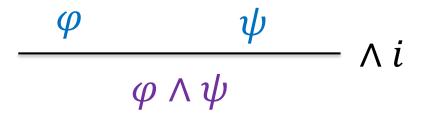
¹⁰ Proof Rules



https://teaching.iaik.tugraz.at/ media/lub/deduction.pdf

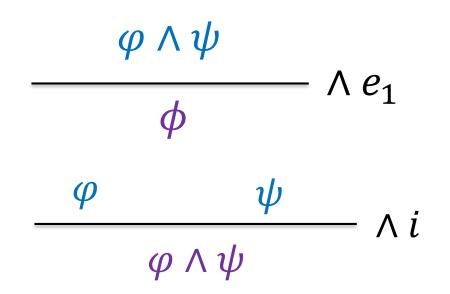
Rules for Conjunction





- $p,q \vdash p \land q$
- 1. p prem.
- 2. q prem.
- 3. $p \wedge q \wedge i 1,2$

 $p \wedge q, r \vdash q \wedge r$



- 1. $p \wedge q$ prem.
- 2. r prem.
- 3. $q \wedge e2 1$
- 4. $q \wedge r \wedge i 3,2$

 $(p \land q) \land r, s \land t \vdash q \land s$

- 1. $(p \land q) \land r$ prem.
- 2. $s \wedge t$ prem.
- 3. $p \wedge q$ $\wedge e1 1$
- 4. $q \wedge e1 2$
- 5. $s \wedge e1 2$
- 6. $q \wedge s$ $\wedge i 4,5$

Rules for Double Negation

Elimination

Introduction



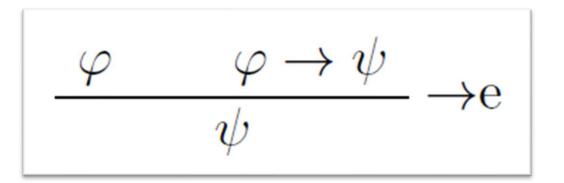
 $[\text{Lecture}] \neg \neg \neg p \land q, \neg \neg r \vdash r \land \neg p \land \neg \neg q$

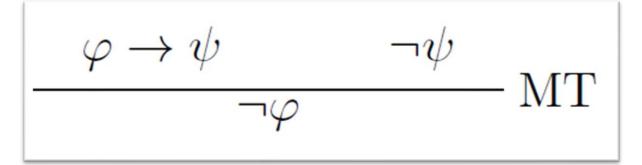
- 1. $\neg \neg \neg p \land q$ prem.
- 2. $\neg \neg r$ prem.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9. $r \wedge \neg p \wedge \neg \neg q$

Rules for Implication - Elimination

Elimination

Derived Elimination Rule -Modus Tollens





[Lecture]
$$p, p \to q, p \to (q \to r) \vdash r$$

$$\frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \rightarrow e$$

$$\frac{\varphi \rightarrow \psi \quad \neg \psi}{\neg \varphi} \quad MT$$

1.	p	prem.
2.	$p \rightarrow q$	prem.
3.	$p \to (q \to r)$	prem.
4.	$q \rightarrow r$	\rightarrow e 1,3
5.	q	\rightarrow e 1,2
6.	r	$\rightarrow e 4,5$

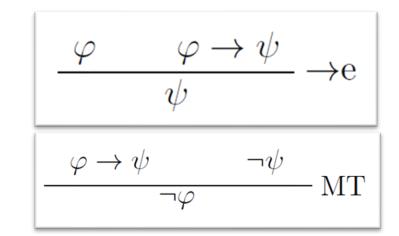
$$[\text{Lecture}] \neg p \rightarrow q, \neg \neg \neg q \land r \vdash p \land \neg \neg \neg q$$

$$\frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \rightarrow e$$

$$\frac{\varphi \rightarrow \psi \quad \neg \psi}{\neg \varphi} \quad MT$$

1.	$\neg p \to q$	prem.
2.	$\neg\neg\neg \neg q \wedge r$	prem.
3.	$\neg \neg \neg \neg q$	$\wedge e1$ 2
4.	$\neg q$	$\neg \neg e 3$
5.	$\neg \neg p$	MT 1,4
6.	p	$\neg \neg e 5$
7.	$p \wedge \neg \neg \neg q$	$\wedge i 6,3$

$$[\text{Lecture}] \neg p \rightarrow (q \rightarrow r), \neg p, \neg r \vdash \neg q$$



1.	$\neg p \rightarrow (q \rightarrow r)$	prem.
~	$\neg p$	prem.
3.	$\neg r$	prem.
4.	$q \to r$	\rightarrow e 1,2
5.	$\neg q$	MT 4,3

Rules for Implication

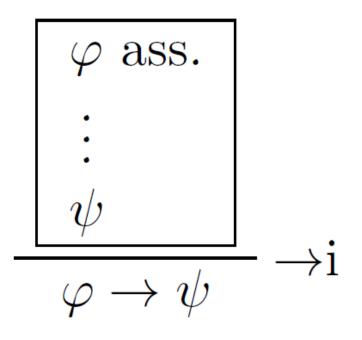
Elimination

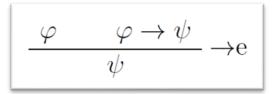
$$\begin{array}{cc} \varphi & \varphi \to \psi \\ \hline \psi \end{array} \to \mathbf{e} \end{array}$$

Derived Elimination Rule -Modus Tollens

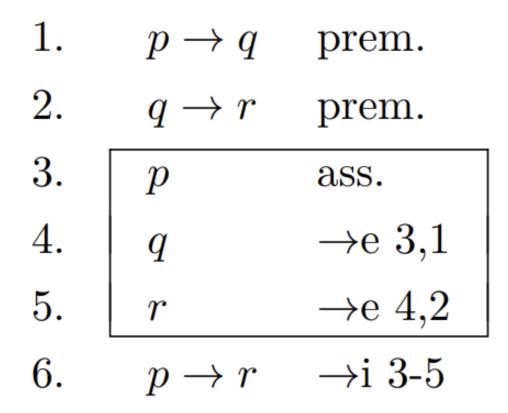
$$\begin{array}{c|c} \varphi \to \psi & \neg \psi \\ \hline & \neg \varphi & \end{array} \operatorname{MT} \end{array}$$

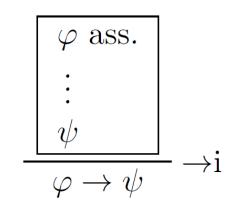
Introduction

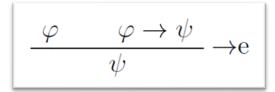




[Lecture]
$$p \to q, q \to r \vdash p \to r$$

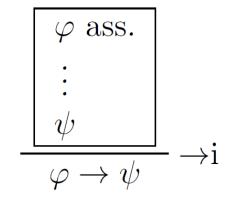






[Lecture] $p \to (q \land r), (q \to s) \vdash p \to (s \land r)$

1.	$p \to (q \wedge r)$	prem.
2.	$q \rightarrow s$	prem.
3.	p	ass.
4.	$q \wedge r$	$\rightarrow e 1,3$
5.	q	$\wedge e1$ 4
6.	s	$\rightarrow e 2,5$
7.	r	$\wedge e2$ 4
8.	$s \wedge r$	∧i 6,7
9.	$p \to (s \wedge r)$	\rightarrow i 3-8



Rules for Disjunction - Introduction

Introduction

$$\frac{\varphi}{\varphi \lor \psi} \lor i1 \qquad \frac{\varphi}{\psi \lor \varphi} \lor i2$$

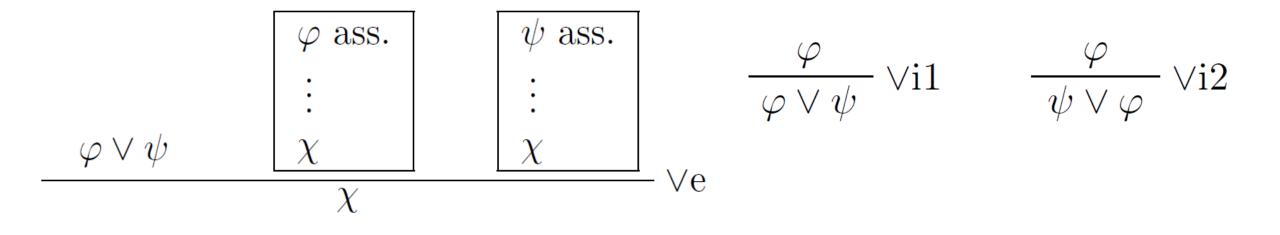
 $[\text{Lecture}] \ p \land q, r \to s \ \vdash \ (p \lor (r \to s)) \land (q \lor ((t \lor r) \to u))$

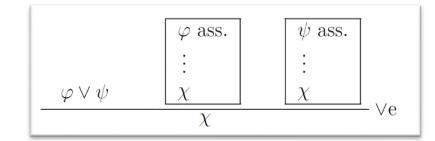
1. $p \land q$ prem.2. $r \rightarrow s$ prem.3.p $\land e1 1$ 4. $p \lor (r \rightarrow s)$ $\lor i1 3$ 5.q $\land e2 1$ 6. $q \lor ((t \lor r) \rightarrow u)$ $\lor i1 5$ 7. $(p \lor (r \rightarrow s)) \land (q \lor ((t \lor r) \rightarrow u))$ $\land i 4, 6$

Rules for Disjunction

Elimination

Introduction

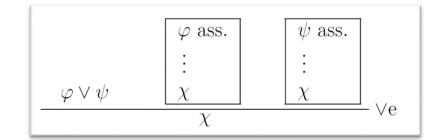




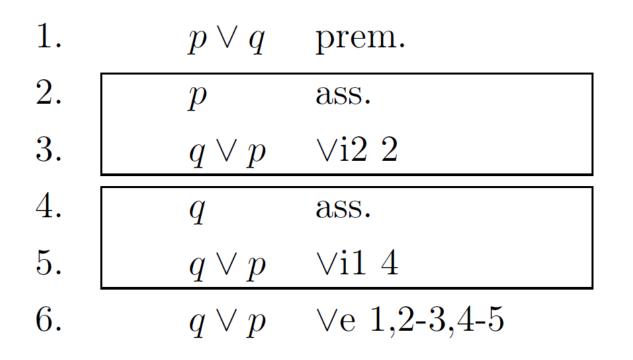
$$p \lor q \vdash q \lor p$$

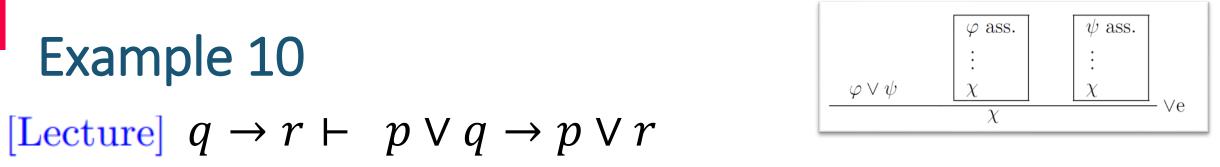
1. $p \lor q$ prem.

- 2.
- 3.
- 4.
- 1.
- 5.
- 6. $q \lor p$



$$p \lor q \vdash q \lor p$$

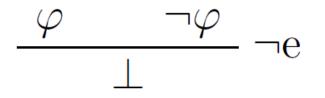




1.	$q \to r$	prem.	
2.	$p \lor q$	ass.	
3.	p	ass.	
4.	$p \lor r$	\vee i1 2	
5.	q	ass.	
6.	r	$\rightarrow e 5,1$	
7.	$p \lor r$	∨i 6	
8.	$p \lor r$	$\lor e 2,3-4,5-7$	
9.	$p \lor q \to (p \lor r)$	\rightarrow i 2-8	

Rules for Negation

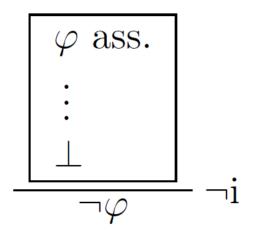
Elimination



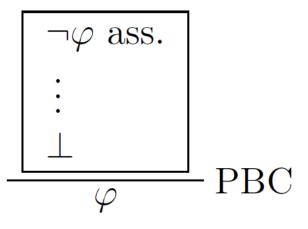
Rule for \bot - Elimination

$$\frac{\perp}{\varphi} \perp e$$

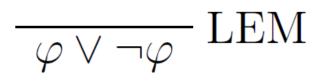
Introduction



Derived Rule -Proof by Contradiction

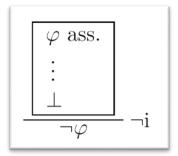


Law-of-the-Excluded-Middle Rule

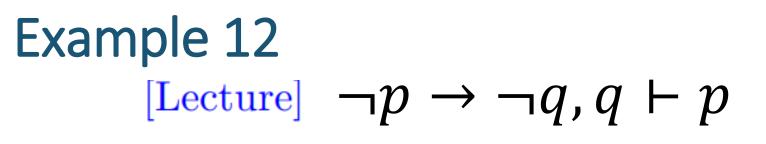


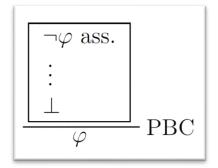
Copy-Rule φ copy φ

Example 11 [Lecture] $p \rightarrow \neg q, q \vdash \neg p$



1.	$p \to \neg q$	prem.
2.	q	prem.
3.	p	ass.
4.	$\neg q$	$\rightarrow e 3,1$
5.		$\neg e 2,4$
6.	$\neg p$	¬i 3-5



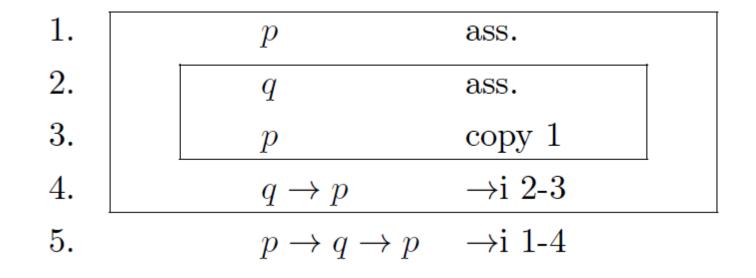


1. $\neg p \rightarrow \neg q$ prem.

2. q prem.

3.	$\neg p$	ass.
4.	$\neg q$	$\rightarrow e 3,1$
5.	\perp	¬e 2,4
6.	p	PBC 3-5

Example 13 [Lecture] $\vdash p \rightarrow (q \rightarrow p)$



Example 14 [Lecture] $\vdash ((p \rightarrow q) \rightarrow p) \rightarrow p$

1.	$(p \to q) \to p$	ass.
2.	$\neg p$	ass.
3.	$ \qquad \neg(p \to q) $	MT 1,2
4.	p	ass.
5.		¬e 2,4
6.	q	$\perp e 5$
7.	$p \to q$	→i 4-6
8.		$\neg e 3,7$
9.	p	PBC 2-8
10.	$((p \to q) \to p) \to p$	\rightarrow i 1-9

$[\text{Lecture}] \neg q \lor \neg p \vdash \neg (q \land p)$			
1.	$\neg q \vee \neg p$	prem.	
2.	$q \wedge p$	ass.	
3.	$\neg q$	ass.	
4.	q	$\wedge e1 2$	
5.		¬e 3,4	
6.	$\neg p$	ass.	
7.	p	$\wedge e2 2$	
8.		¬e 6,7	
9.	\perp	∨e 1, 3-5, 6-8	
10.	$\neg(q \land p)$	¬i 2-9	

[Lecture] $p \lor \neg \neg q, \neg p \land \neg q \vdash s \lor \neg t$

1.
$$p \lor \neg \neg q$$
 prem.
2. $\neg p \land \neg q$ prem.
3. p ass.
4. $\neg p$ $\land e1 2$
5. \bot $\neg e 3,4$
6. $s \lor \neg t$ $\bot e 5$
7. $\neg \neg q$ ass.
8. $\neg q$ $\land e2 2$
9. \bot $\neg e 7,8$
10. $s \lor \neg t$ $\bot e 9$
11. $s \lor \neg t$ $\lor e 1, 3-6, 7-10$

38

[Lecture] $p \to q \vdash \neg p \lor q$

1.
$$p \rightarrow q$$
 prem.
2. $\neg p \lor p$ LEM
3. $\neg p$ ass.
4. $\neg p \lor q$ $\lor i1.3$
5. p ass.
6. $q \rightarrow e.1,5$
7. $\neg p \lor q$ $\lor i2.6$
8. $\neg p \lor q$ $\lor e.2,3-5,5-7$

[Lecture]
$$\vdash \neg (p \land q) \lor p$$

1.	$p \vee \neg p$	LEM
2.	p	ass.
3.	$\neg (p \land q) \lor p$	\vee i2 2
4.	$\neg p$	ass.
5.	$p \land q$	ass.
6.	p	$\wedge e15$
7.		$\neg e 6,4$
8.	$\neg (p \land q)$	¬i 5-7
9.	$\neg (p \land q) \lor p$	∨i1 8
10.	$\neg (p \land q) \lor p$	∨e 1, 2-3, 4-9

 $[\text{Lecture}] \neg \neg k \rightarrow (l \lor m), \neg \neg \neg l \rightarrow m \vdash \neg k \lor (l \lor \neg \neg m)$

1.	$\neg \neg k \to (l \wedge m)$	prem.
2.	$\neg\neg\neg l \to m$	prem.
3.	$m \vee \neg m$	LEM
4.	m	ass.
5.	$\neg \neg m$	¬¬i 4
6.	$l \lor \neg \neg m$	\lor i2 5
7.	$\neg k \lor (l \lor \neg \neg m)$	\lor i2 6
8.	$\neg m$	ass.
9.	$\neg \neg \neg \neg l$	MT 2, 8
10.	$\neg \neg l$	¬¬е 9
11.	l	¬¬e 10
12.	$l \vee \neg \neg m$	∨i1 11
13.	$\neg k \lor (l \lor \neg \neg m)$	∨i2 12
- • •		•

Tips for Deduction

- Work from both sides
- Look at the conclusion
 - If it is of the form $\varphi \rightarrow \psi$, apply immediately $\rightarrow i$
 - If it is of the form $\neg \varphi$, apply immediately $\neg i$
- If you get stuck
 - Try case splits: LEM
 - Try proof by contradiction

Outline

Proof Rules

- Introduction Rules
- Elimination Rules
- Soundness and Completeness
 - Proof the invalidity of sequences via counter examples

Soundness ("Korrektheit")

Definition

$$\phi_1, \phi_2, \dots, \phi_n \vdash \psi \quad \Rightarrow \quad \phi_1, \phi_2, \dots, \phi_n \vDash \psi$$

- Meaning
 - Every provable sequent is a correct semantic entailment.
 - Incorrect entailments are not provable.
 - $\phi_1, \phi_2, \dots, \phi_n \nvDash \psi \quad \Rightarrow \quad \phi_1, \phi_2, \dots, \phi_n \nvDash \psi$

Completeness ("Vollständigkeit")

Definition

$$\phi_1, \phi_2, \dots, \phi_n \vDash \psi \quad \Rightarrow \quad \phi_1, \phi_2, \dots, \phi_n \vdash \psi$$

- Meaning
 - Every correct semantic entailment has a proof.
 - Unprovable sequents are incorrect entailments.

•
$$\phi_1, \phi_2, \dots, \phi_n \not\vdash \psi \quad \Rightarrow \quad \phi_1, \phi_2, \dots, \phi_n \not\models \psi$$

[Lecture] "Natural deduction for propositional logic is *sound* and *complete*." Explain in your own words what this means.

Soundness

Natural deduction for propositional logic is sound. Therefore, any sequent that can be proven is a correct semantic entailment.

 $\phi_1, \phi_2, ..., \phi_n \vdash \psi \qquad \Rightarrow \qquad \phi_1, \phi_2, ..., \phi_n \vDash \psi$

So, if we have proven with natural deduction that a sequent $\phi_1, \phi_2, ..., \phi_n$ is valid, then for all valuations in which all premises $\phi_1, \phi_2, ..., \phi_n$ evaluate to *true*, ψ evaluates to *true* as well.

Completeness

Natural deduction for propositional logic is sound. Therefore, any sequent that is a correct semantic entailment can be proven.

 $\phi_1, \phi_2, ..., \phi_n \vDash \psi \qquad \Rightarrow \qquad \phi_1, \phi_2, ..., \phi_n \vdash \psi$

Invalid Sequents

- $p \lor q \vdash p \land q$?
- Model \mathcal{M} : p = T q = F
 - $\mathcal{M} \models p \lor q$ but $\mathcal{M} \nvDash p \land q$
 - *M* satisfies all premises
 - \mathcal{M} does not satisfy the conclusion
 - Therefore, *M* is a counterexample!
 - This proves: $p \lor q \nvDash p \land q$

[Lecture] How can you show that a sequent is not valid? Is this a consequence of soundness or completeness. Explain your answer.

To show that a sequent is invalid, we need to find a *counter example*. A counter example is a model, that *satisfies all premises but falsifies the conclusion*.

[Lecture]
$$p \to q, q \to r \vdash r$$
.

This sequent is not provable.

$$\mathcal{M}: p = F, q = F, r = F$$

 $\mathcal{M} \models p \rightarrow q, q \rightarrow r$
 $\mathcal{M} \nvDash r$

[Lecture] Translate the following reasoning into a sequent. If the sequent is valid, proof it using the rules of natural deduction. If the sequent is not valid, provide a counter example.

If I press the button, the window opens. The window is open. Therefore, I pressed the button.

[Lecture] Translate the following reasoning into a sequent. If the sequent is valid, proof it using the rules of natural deduction. If the sequent is not valid, provide a counter example.

Translation:

- p: Press button.
- q: Open window.

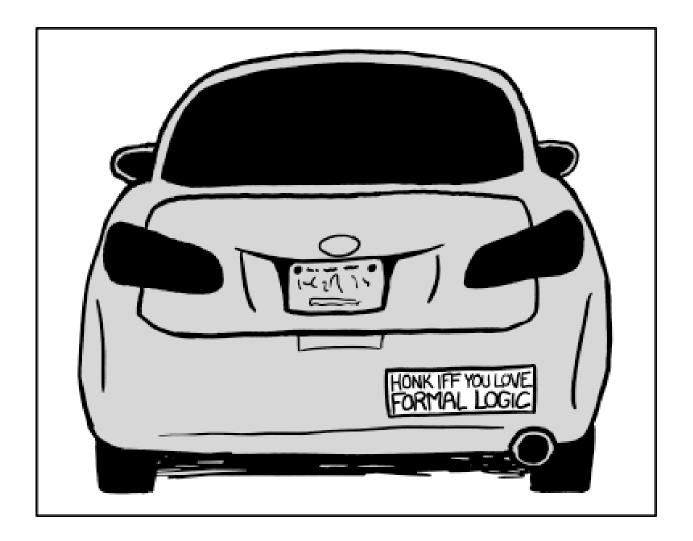
sequent: $p \rightarrow q, q \vdash p$

This sequent is not provable. $\mathcal{M}: p = F, q = T$ $\mathcal{M} \models p \rightarrow q, q$ $\mathcal{M} \nvDash p$

Learning Targets

- Perform deduction proofs or find a counterexample for sequents
- Check or find errors in a given deduction proof
- Explain "soundness" and "completeness"
 - Of natural deduction for propositional logic

Thank You



https://xkcd.com/1033/