
Bettina Könighofer
bettina.koenighofer@lamarr.at

Logic and Computability
Lecture 4

SAT Solver

Stefan Pranger
stefan.pranger@iaik.tugraz.at

https://xkcd.com/287/

 Applications
 HW and SW Verification
 Bounded Model Checking
 (Hardware) Equivalence Checking
 Circuit Synthesis
 Planning (e.g., air-traffic control, telegraph routing)
 Scheduling (sport tournaments)
 Finite mathematics
 Cryptanalysis
 …

2

Motivation

 Automatically generated from problem specifications

3

Motivation – SAT Encoding

¬x1∨ x7

¬x1∨ x6

¬x1∨ x5

Should be set to false?x1

 Automatically generated from problem specifications

4

10 Pages Later

𝐍𝐨𝐭𝐞 𝒙𝟏

 Automatically generated from problem specifications

5

4.000 Pages Later

6

Finally, 15.000 Pages Later

• How long to solve it?
• Modern SAT solver needs just a few seconds!

7

The SAT Problem

8

The SAT Problem

9

The SAT Problem

10

The SAT Problem

Outline
11

 Normal Forms

 DPLL Algorithm
 Boolean Constrain Propagation
 Pure Literals

 Conflict-Driven Clause Learning

 Resolution Proofs
 Resolution Rule

 Tseitin’s Algorithm (if time allows it)

Terminology
12

 Literal: propositional variable or its negation
 Example:

 Clause: disjunction of literals
 Example:

 Cube: conjunction of literals
 Example:

p ,q , r

(p∨q∨¬r)

(q∧¬q∧¬r)

Normal Forms
13

 Disjunctive Normal Form (DNF)
 Disjunction of cubes:

where each is a literal.

 Conjunctive Normal Form (CNF)
 Conjunction of clauses:

where each is a literal.

a i , b j

(a1∧a2∧...∧an)∨(b1∧b2∧...∧bm)∨...

(a1∨a2∨...∨an)∧(b1∨b2∨...∨bm)∨...

a i , b j

Normal Forms
14

https://de.wikipedia.org/wiki/Konjunktive_Normalform

15

Normal Forms

16

Normal Forms

17

Normal Forms

18

SAT-Solver

SAT
Solver

SAT
Solver

Formula in CNF

Satisfiable
(+ model)

Unsatisfiable
(+ resolution

proof)

19

 Due to Davis, Putnam, Loveland, Logemann

 M. Davis, H. Putnam. “A computing procedure for quantification
theory”. Journal of the ACM, 7:201-215, 1960

 M. Davis, G. Logemann, and D. Loveland. “A machine program for
theorem-proving”. Communications of the ACM, 5:394-397,
1962

 Basis for most modern SAT solvers

DPLL Algorithm

Notation

• φ: formula in CNF
• E.g., φ = (a  b  ¬d)  c

• A: Assignment

• given in set representation, e.g.: {¬a,b,d}
• conjunction of literals, e.g. A = ¬a  b  d
• Total or partial Assignment

• φ[A]: φ with variables set according to A
• E.g., φ[A] =

20

Notation

• φ: formula in CNF
• E.g., φ = (a  b  ¬d)  c

• A: Assignment

• given in set representation, e.g.: {¬a,b,d}
• conjunction of literals, e.g. A = ¬a  b  d
• Total or partial Assignment

• φ[A]: φ with variables set according to A
• E.g., φ[A] = (FALSE  TRUE  ¬ TRUE)  c = c

21

22

Basis Idea - Backtracking Binary Search

 Recursively search an A:
 φ[A] is TRUE

 Proves φ satisfiable
 “A” is a satisfying model

 No such A exists
 φ is unsatisfiable

23

CNF is a Set of Clauses

 Formula:
● φ =

(a  ¬b  c) 
(¬a  ¬d) 
(¬c)

 Set Representation:
● C = {

{a,¬b,c},
{¬a,¬d},
{¬c}

}

24

Setting Literals
 Compute φ[l], for a literal l:

 Remove all clauses that contain l:
 They are true
 E.g. φ = (a  b)  c, A = {a} → φ[A] = (TRUE  b)  c = (TRUE)  c

 Remove literals ¬l from clauses that contain ¬l:
 They cannot be set to true anymore
 E.g. φ = (a  b)  c, A = {¬a} → φ[A] = (FALSE  b)  c = b  c

 Truth Value of a CNF
 An empty clause is false (FALSE  FALSE  …)  ….
 An set of ‘satisfied’ clauses is true (TRUE)  (TRUE)  ...

25

DPLL Example

26

DPLL Example

27

Decision Heuristic
 Which literal to pick?

 Randomly
 According to some order
 Satisfies largest number of unsatisfied clauses

 satisfy a clause = occur in a clause

 Open Research Topic

28

Unit Clauses
 Unit clause:

 a clause with a single unassigned literal
 Examples:

 {a}
 {¬b}

29

Unit Clauses

30

Unit Clauses

31

Boolean Constrain Propagation (BCP)
 Unit clause:

 a clause with a single unassigned literal
 Examples:

 {a}
 {¬b}

 Unit Clause exists → set its literal
 Otherwise: immediately FALSE
 Very simple but very important heuristic!

32

DPLL + BCP Example

33

DPLL + BCP Example

34

Pure Literals
 Pure Literal:

 Unassigned literal
 Complement does not occur in any unsatisfied clause

 Pure literals → set to TRUE

35

DPLL + BCP + Pure Literals Example

36

DPLL + BCP + Pure Literals Example

37

DPLL Heuristics

38

DPLL Heuristics

Clause Learning

1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)

¬c

¬a

UNSAT

a

UNSAT

¬a

UNSAT

a

UNSAT

Without learning

Problem is with the literal “a”:
→ No need to try c=TRUE!

39

¬c

¬a

UNSAT

→ Learn New Clause: (a)→ Learn New Clause: (a)

40

1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)

1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)

Clause Learning

Root nodes:
Decisions

Internal nodes:
Implied (by BCP)

Conflict NodeClause numbers:
b is implied by
¬a via clause 7

41

1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)

Conflict Graphs

42 Conflict Driven Clause Learning

43 Conflict Driven Clause Learning

4

5

8

No decision was necessary
→ We learn: UNSAT

No decision was necessary
→ We learn: UNSAT

44 Conflict Graphs

1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)

• Ongoing Research Problem

• In this course:
• → earliest level where conflict clause is a unit clause
• New clause can immediately be used

45 Backtrack Level

46

DPLL + BCP + PL + CDCL

47

DPLL + BCP + PL + CDCL

https://git.pranger.xyz/sp/LAC-Questionnaire/releases/download/release_three/
questionnaire_with_solutions_three.pdf

https://git.pranger.xyz/sp/LAC-Questionnaire/releases/download/release_three/questionnaire_with_solutions_three.pdf
https://git.pranger.xyz/sp/LAC-Questionnaire/releases/download/release_three/questionnaire_with_solutions_three.pdf

• Satisfiable:
• Satisfying Assignment

• Unsatisfiable
• Proof of Unsatisfiability

48 SAT Solver Output

• Resolution Rule:

(a  b1  …  bn) (¬a  c1  …  cm)

 (b1  …  bn  c1  …  cm)

• Remember: a ¬a

 FALSE

• “Derived” rule for natural deduction

49 Proving Unsatisfiability

• Turn Conflict Graph Around

• Select clause that implies conflict

• Iteratively, resolve while back-
traversing graph

6. a  ¬b7. a  b

8. a

50 Prove Learned Clause

 ¬a8. a

4. ¬a  ¬b5. ¬a  b

FALSE

6. a  ¬b7. a  b

4

5

8

 Turn All Conflict Graphs Around

51 Cheap Resolution Proof

1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)

 ¬a8. a

4. ¬a  ¬b5. ¬a  b

FALSE

6. a  ¬b7. a  b

4

5

8

 Turn All Conflict Graphs Around

52 Cheap Resolution Proof

1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)

53 Cheap Resolution Proof

54 Cheap Resolution Proof

• Binary Search Tree
• Worst Case: Exponential Time

• Pruning
• Boolean Constraint Propagation (BCP)
• Pure Literals
• Learn Conflict Clauses

55 DPLL + BCP + PL + CDCL

● As long as there is no conflict on decision level 0:
● Try to perform BCP, if there is no unit clause,
● try to perform PL, if there is no pure literal,
● make a decision.

► Update all clauses.
► If there is a conflict: Construct graph and resolution proof, add newly learned clause.
► If all clauses are empty and no conflict: Report satisfying model.

●If there is a conflict on decision level 0:
● Construct graph and resolution proof

56 DPLL - Summary

• DPLL Algorithm
• Binary Search Tree
• Worst-Case Exponential

• Pruning
• Boolean Constraint Propagation
• Pure Literals
• Learned Clauses

• Resolution Proofs
• Resolution Rule
• “Turn Conflict Graph around”

57 Summary

Thank You

58

58

https://xkcd.com/1033/

	Slide 1
	Motivation – Equivalence Checking
	Motivation – SAT Encoding
	10 Pages Later
	4.000 Pages Later
	Finally, 15.000 Pages Later
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Outline
	Terminology
	Normal Forms
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Clause Learning
	Learning
	Conflict Graph
	Slide 42
	Slide 43
	Backtracking
	Backtrack Level
	Slide 46
	Slide 47
	SAT Solver Output
	Proving Unsatisfiability
	Prove Learned Clause
	Cheap Resolution Proof
	Slide 52
	Slide 53
	Slide 54
	DPLL + BCP + PL + Learning
	Slide 56
	Summary
	Thank You

