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 Applications
 HW and SW Verification
 Bounded Model Checking
 (Hardware) Equivalence Checking
 Circuit Synthesis
 Planning (e.g., air-traffic control, telegraph routing)
 Scheduling (sport tournaments)
 Finite mathematics 
 Cryptanalysis
 …
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Motivation



 Automatically generated from problem specifications
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Motivation – SAT Encoding

¬x1∨ x7

¬x1∨ x6

¬x1∨ x5

Should     be set to false?x1



 Automatically generated from problem specifications
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10 Pages Later

𝐍𝐨𝐭𝐞 𝒙𝟏



 Automatically generated from problem specifications
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4.000 Pages Later
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Finally, 15.000 Pages Later

• How long to solve it?
• Modern SAT solver needs just a few seconds!
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The SAT Problem
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The SAT Problem
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The SAT Problem
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The SAT Problem



Outline
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 Normal Forms

 DPLL Algorithm
 Boolean Constrain Propagation
 Pure Literals

  Conflict-Driven Clause Learning

  Resolution Proofs
 Resolution Rule

 Tseitin’s Algorithm (if time allows it)
 



Terminology
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 Literal: propositional variable or its negation
 Example: 

 Clause: disjunction of literals
 Example: 

 Cube: conjunction of literals
 Example: 

 

p ,q , r

( p∨q∨¬r )

(q∧¬q∧¬r )



Normal Forms
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 Disjunctive Normal Form (DNF)
 Disjunction of cubes:

where each          is a literal.

 Conjunctive Normal Form (CNF)
  Conjunction of clauses:

where each          is a literal.

 

a i , b j

(a1∧a2∧...∧an)∨(b1∧b2∧...∧bm)∨...

(a1∨a2∨...∨an)∧(b1∨b2∨...∨bm)∨...

a i , b j



Normal Forms
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https://de.wikipedia.org/wiki/Konjunktive_Normalform
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Normal Forms
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Normal Forms
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Normal Forms
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SAT-Solver

SAT 
Solver

SAT 
Solver

Formula in CNF 

Satisfiable
(+ model)

Unsatisfiable
(+ resolution 

proof)
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 Due to Davis, Putnam, Loveland, Logemann

 M. Davis, H. Putnam. “A computing procedure for quantification 
theory”. Journal of the ACM, 7:201-215, 1960

 M. Davis, G. Logemann, and D. Loveland. “A machine program for 
theorem-proving”. Communications of the ACM, 5:394-397, 
1962

 Basis for most modern SAT solvers

DPLL Algorithm



Notation

• φ: formula in CNF
• E.g., φ = (a  b  ¬d)  c

• A: Assignment

• given in set representation, e.g.: {¬a,b,d}      
• conjunction of literals, e.g. A = ¬a  b  d
• Total or partial Assignment

• φ[A]: φ with variables set according to A
• E.g., φ[A] = 

20



Notation

• φ: formula in CNF
• E.g., φ = (a  b  ¬d)  c

• A: Assignment

• given in set representation, e.g.: {¬a,b,d}      
• conjunction of literals, e.g. A = ¬a  b  d
• Total or partial Assignment

• φ[A]: φ with variables set according to A
• E.g., φ[A] =  (FALSE  TRUE  ¬ TRUE)  c =  c

21
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Basis Idea - Backtracking Binary Search

 Recursively search an A:
  φ[A] is TRUE 

 Proves φ satisfiable
 “A” is a satisfying model

 No such A exists
 φ is unsatisfiable
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CNF is a Set of Clauses

 Formula:
●  φ =

(a  ¬b  c) 
(¬a  ¬d ) 
(¬c)

 Set Representation:
● C = {

{a,¬b,c},
{¬a,¬d},
{¬c}

} 
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Setting Literals
 Compute φ[l], for a literal l:

 Remove all clauses that contain l:
 They are true
 E.g.  φ = (a  b)  c, A = {a} → φ[A] = (TRUE  b)  c = (TRUE)  c

 Remove literals ¬l from clauses that contain ¬l: 
 They cannot be set to true anymore
 E.g. φ = (a  b)  c, A = {¬a} → φ[A] = (FALSE  b)  c = b  c  

 Truth Value of a CNF
 An empty clause is false (FALSE  FALSE  … )  ….
 An set of ‘satisfied’ clauses is true (TRUE)  (TRUE)  ... 
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DPLL Example



26

DPLL Example
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Decision Heuristic
 Which literal to pick?

  Randomly
 According to some order
 Satisfies largest number of unsatisfied clauses

 satisfy a clause = occur in a clause

 Open Research Topic
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Unit Clauses
 Unit clause:

 a clause with a  single unassigned literal
 Examples:

 {a}
 {¬b}
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Unit Clauses
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Unit Clauses
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Boolean Constrain Propagation (BCP)
 Unit clause:

 a clause with a  single unassigned literal
 Examples:

 {a}
 {¬b}

 Unit Clause exists → set its literal
 Otherwise: immediately FALSE
 Very simple but very important heuristic!
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DPLL + BCP Example
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DPLL + BCP Example
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Pure Literals
 Pure Literal:

 Unassigned literal
 Complement does not occur in any unsatisfied clause

 Pure literals → set to TRUE
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DPLL + BCP + Pure Literals Example
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DPLL + BCP + Pure Literals Example
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DPLL Heuristics
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DPLL Heuristics



Clause Learning

1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)

¬c

¬a

UNSAT

a

UNSAT

¬a

UNSAT

a

UNSAT

Without learning

Problem is with the literal “a”: 
→ No need to try c=TRUE!

39



¬c

¬a

UNSAT

→ Learn New Clause: (a)→ Learn New Clause: (a)
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1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)

1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)

Clause Learning



Root nodes: 
Decisions 

Internal nodes: 
Implied (by BCP)

Conflict NodeClause numbers:
b is implied by 
¬a via clause 7
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1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)

Conflict Graphs



42 Conflict Driven Clause Learning



43 Conflict Driven Clause Learning



4

5

8

No decision was necessary
→ We learn: UNSAT

No decision was necessary
→ We learn: UNSAT

44 Conflict Graphs

1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)



• Ongoing Research Problem

• In this course:
• →  earliest level where conflict clause is a unit clause 
• New clause can immediately be used

45 Backtrack Level



46

DPLL + BCP + PL + CDCL
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DPLL + BCP + PL + CDCL

https://git.pranger.xyz/sp/LAC-Questionnaire/releases/download/release_three/
questionnaire_with_solutions_three.pdf

https://git.pranger.xyz/sp/LAC-Questionnaire/releases/download/release_three/questionnaire_with_solutions_three.pdf
https://git.pranger.xyz/sp/LAC-Questionnaire/releases/download/release_three/questionnaire_with_solutions_three.pdf


• Satisfiable:
• Satisfying Assignment

• Unsatisfiable
• Proof of Unsatisfiability

48 SAT Solver Output



• Resolution Rule:

(a  b1  …  bn)          (¬a  c1  …  cm)

 (b1  …  bn  c1  …  cm)

• Remember:        a        ¬a

                                 FALSE

• “Derived” rule for natural deduction

49 Proving Unsatisfiability



• Turn Conflict Graph Around

• Select clause that implies conflict

• Iteratively, resolve while back-
traversing graph

6. a  ¬b7. a  b

8. a

50 Prove Learned Clause



 ¬a8. a

4. ¬a  ¬b5. ¬a  b

FALSE

6. a  ¬b7. a  b

4

5

8

 Turn All Conflict Graphs Around

51 Cheap Resolution Proof

1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)



 ¬a8. a

4. ¬a  ¬b5. ¬a  b

FALSE

6. a  ¬b7. a  b

4

5

8

 Turn All Conflict Graphs Around

52 Cheap Resolution Proof

1. (a  ¬c)

2. (b  ¬c)

3. (¬a  ¬b  c)

4. (¬a  ¬b)

5. (¬a  b)

6. (a  ¬b)

7. (a  b)



53 Cheap Resolution Proof



54 Cheap Resolution Proof



• Binary Search Tree
• Worst Case: Exponential Time

• Pruning
• Boolean Constraint Propagation (BCP)
• Pure Literals
• Learn Conflict Clauses

55 DPLL + BCP + PL + CDCL



● As long as there is no conflict on decision level 0:
● Try to perform BCP, if there is no unit clause,
● try to perform PL, if there is no pure literal,
● make a decision.

►  Update all clauses.
►  If there is a conflict: Construct graph and resolution proof, add newly learned clause.
►  If all clauses are empty and no conflict: Report satisfying model.

●If there is a conflict on decision level 0:
● Construct graph and resolution proof

 

56 DPLL - Summary



• DPLL Algorithm
• Binary Search Tree
• Worst-Case Exponential

• Pruning
• Boolean Constraint Propagation
• Pure Literals
• Learned Clauses

• Resolution Proofs
• Resolution Rule
• “Turn Conflict Graph around”

57 Summary



Thank You

58

58

https://xkcd.com/1033/
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