Logic and Computability
 Lecture 4

SAT Solver

Bettina Könighofer

bettina.koenighofer@lamarr.at

Stefan Pranger

stefan.pranger@iaik.tugraz.at

2. RETURN ALONE.

3. TAKE THE CABBAGE ACROS5.

4. LEAVE THE WOL:

WHYDD YOU HAVE A WOFF?

Motivation

- Applications
- HW and SW Verification
- Bounded Model Checking
- (Hardware) Equivalence Checking
- Circuit Synthesis
" Planning (e.g., air-traffic control, telegraph routing)
- Scheduling (sport tournaments)
- Finite mathematics
- Cryptanalysis
- ...

Motivation - SAT Encoding

- Automatically generated from problem specifications

$\underbrace{\text { pcnf } 51639368352}$	$\neg X_{1} \vee \chi_{7}$
-160	$\neg X_{1} \vee{ }_{6}$
-150	$\chi_{1} \vee \chi_{6}$
-1-40	$\neg X_{1} \vee X_{5}$
-130	
-120	
-1-80	
-9150 -9140	Should x_{1} be set to false?
-9 130	
-9-120	
-9 110	
-9 100	
-9-160	
-17230	
-17220	

10 Pages Later

- Automatically generated from problem specifications

```
185-90
185-10
17716916115314513712912111310597
89817365574941
33251791-1850
186-1870
186-1880
    ...
    i.e., ( }\mp@subsup{\textrm{x}}{177}{}\mathrm{ or }\mp@subsup{\textrm{x}}{169}{}\mathrm{ or }\mp@subsup{\textrm{x}}{161}{}\mathrm{ or }\mp@subsup{\textrm{x}}{153}{}
```


Note \boldsymbol{x}_{1}

4.000 Pages Later

- Automatically generated from problem specifications

```
10236-10050 0
10236-100510
10236-10235 0
10008100091001010011100121001310014
    10015100161001710018100191002010021
    10022100231002410025100261002710028
    10029100301003110032100331003410035
    10036100371008610087100881008910090
    10091100921009310094100951009610097
    10098100991010010101101021010310104
    1010510106 10107 10108-55-54 53-52 -5150
    1004710048100491005010051 10235-10236 0
10237-100080
10237-10009 0
10237-10010 0
```


Finally, 15.000 Pages Later

$$
\left.\begin{array}{l}
-72600 \\
7-2600 \\
107210700 \\
-15-14-13-12-11-100 \\
-15-14-13-12-11100 \\
-15-14-13-1211-100 \\
-15-14-13-1211100 \\
-7-6-5-4-3-20 \\
-7-6-5-4-320 \\
-7-6-5-43 \\
-7-6
\end{array}\right)
$$

- How long to solve it?
- Modern SAT solver needs just a few seconds!

The SAT Problem

[Lecture] Define the Boolean Satisfiability Problem?

The SAT Problem

[Lecture] Define the Boolean Satisfiability Problem?

Given a propositional formula φ, the Boolean Satisfiability Problem asks whether there exists a model such that the formula evaluates to true.

The SAT Problem

[Lecture] What is the complexity of the SAT-Problem? What does its complexity imply?

The SAT Problem

[Lecture] What is the complexity of the SAT-Problem? What does its complexity imply?
The SAT-Problem is NP-complete.
Its complexity implies that it is very unlikely that there exists any polynomial algorithm.

Outline

- Normal Forms
- DPLL Algorithm

- Boolean Constrain Propagation
- Pure Literals
- Conflict-Driven Clause Learning
- Resolution Proofs
- Resolution Rule
- Tseitin's Algorithm (if time allows it)

Terminology

- Literal: propositional variable or its negation
- Example: p, q, r
- Clause: disjunction of literals
- Example: $(p \vee q \vee \neg r)$
- Cube: conjunction of literals
- Example: $(q \wedge \neg q \wedge \neg r)$

Normal Forms

- Disjunctive Normal Form (DNF)
- Disjunction of cubes:

$$
\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right) \vee\left(b_{1} \wedge b_{2} \wedge \ldots \wedge b_{m}\right) \vee \ldots
$$

where each a_{i}, b_{j} is a literal.

- Conjunctive Normal Form (CNF)
- Conjunction of clauses:

$$
\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right) \wedge\left(b_{1} \vee b_{2} \vee \ldots \vee b_{m}\right) \vee \ldots
$$

where each a_{i}, b_{j} is a literal.

Normal Forms

A	B	C	Ergebnis	Klausel
0	0	0	0	$A \vee B \vee C$
0	0	1	0	$A \vee B \vee \neg C$
0	1	0	1	$\neg A \wedge B \wedge \neg C$
0	1	1	1	$\neg A \wedge B \wedge C$
1	0	0	0	$\neg A \vee B \vee C$
1	0	1	1	$A \wedge \neg B \wedge C$
1	1	0	0	$\neg A \vee \neg B \vee C$
1	1	1	1	$A \wedge B \wedge C$

$D N F:(\neg A \wedge B \wedge \neg C) \vee(\neg A \wedge B \wedge C) \vee(A \wedge \neg B \wedge C) \vee(A \wedge B \wedge C)$
$K N F:(A \vee B \vee C) \wedge(A \vee B \vee \neg C) \wedge(\neg A \vee B \vee C) \wedge(\neg A \vee \neg B \vee C)$

Normal Forms

[Lecture] Given the formula $\varphi=(q \rightarrow p) \wedge(r \vee \neg p)$. Compute its representation in Disjunctive Normal Form $(D N F)$ using a truth table.
[Lecture] Given the formula $\varphi=(q \rightarrow p) \wedge(r \vee \neg p)$. Compute its representation in Conjunctive Normal Form ($C N F$) using a truth table.

p	q	r	$\neg p$	$r \vee \neg p$	$q \rightarrow p$	φ
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}

Normal Forms

[Lecture] Given the formula $\varphi=(q \rightarrow p) \wedge(r \vee \neg p)$. Compute its representation in Disjunctive Normal Form $(D N F)$ using a truth table.
[Lecture] Given the formula $\varphi=(q \rightarrow p) \wedge(r \vee \neg p)$. Compute its representation in Conjunctive Normal Form ($C N F$) using a truth table.

p	q	r	$\neg p$	$r \vee \neg p$	$q \rightarrow p$	φ
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}

$$
\begin{aligned}
\operatorname{DNF}(\varphi) & =(\neg p \wedge \neg q \wedge \neg r) \\
& \vee(\neg p \wedge \neg q \wedge r) \\
& \vee(p \wedge \neg q \wedge r) \\
& \vee(p \wedge q \wedge r)
\end{aligned}
$$

Normal Forms

[Lecture] Given the formula $\varphi=(q \rightarrow p) \wedge(r \vee \neg p)$. Compute its representation in Disjunctive Normal Form $(D N F)$ using a truth table.
[Lecture] Given the formula $\varphi=(q \rightarrow p) \wedge(r \vee \neg p)$. Compute its representation in Conjunctive Normal Form ($C N F$) using a truth table.

p	q	r	$\neg p$	$r \vee \neg p$	$q \rightarrow p$	φ
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}

$$
\begin{aligned}
\operatorname{DNF}(\varphi) & =(\neg p \wedge \neg q \wedge \neg r) \\
& \vee(\neg p \wedge \neg q \wedge r) \\
& \vee(p \wedge \neg q \wedge r) \\
& \vee(p \wedge q \wedge r) \\
C N F(\varphi)= & (p \vee \neg q \vee r) \\
& \wedge(p \vee \neg q \vee \neg r) \\
& \wedge(\neg p \vee q \vee r) \\
& \wedge(\neg p \vee \neg q \vee r)
\end{aligned}
$$

SAT-Solver

Formula in CNF

Satisfiable

(+ model)
Unsatisfiable (+ resolution proof)

DPLL Algorithm

- Due to Davis, Putnam, Loveland, Logemann
- M. Davis, H. Putnam. "A computing procedure for quantification theory". Journal of the ACM, 7:201-215, 1960
- M. Davis, G. Logemann, and D. Loveland. "A machine program for theorem-proving". Communications of the ACM, 5:394-397, 1962
- Basis for most modern SAT solvers

Notation

- φ : formula in CNF
- E.g., $\varphi=(\mathrm{a} \vee \mathrm{b} \vee \neg \mathrm{d}) \wedge \mathrm{c}$
- A: Assignment
- given in set representation, e.g.: $\{\neg a, b, d\}$
- conjunction of literals, e.g. $A=\neg a \wedge b \wedge d$
- Total or partial Assignment
- $\varphi[\mathrm{A}]: \varphi$ with variables set according to A
- E.g., $\varphi[\mathrm{A}]=$

Notation

- φ : formula in CNF
- E.g., $\varphi=(\mathrm{a} \vee \mathrm{b} \vee \neg \mathrm{d}) \wedge \mathrm{c}$
- A: Assignment
- given in set representation, e.g.: $\{\neg a, b, d\}$
- conjunction of literals, e.g. $A=\neg a \wedge b \wedge d$
- Total or partial Assignment
- $\varphi[\mathrm{A}]: \varphi$ with variables set according to A
- E.g., $\varphi[\mathrm{A}]=($ FALSE \wedge TRUE $\wedge \neg$ TRUE $) \wedge c=c$

Basis Idea - Backtracking Binary Search

- Recursively search an A:
- $\varphi[\mathrm{A}]$ is TRUE
- Proves φ satisfiable
- " A " is a satisfying model
- No such A exists
- φ is unsatisfiable

CNF is a Set of Clauses

Formula:

- $\varphi=$
$(\mathrm{a} \vee \neg \mathrm{b} \vee \mathrm{c}) \wedge$
$(\neg a \vee \neg d) \wedge$
$(\neg \mathrm{C})$
- Set Representation:
- C = \{
$\{a, \neg b, c\}$,
$\{\neg \mathrm{a}, \neg \mathrm{d}\}$,
$\{\subset c\}$
\}

Setting Literals

- Compute $\varphi[I]$, for a literal I:
- Remove all clauses that contain I:
- They are true
- E.g. $\varphi=(\mathrm{a} \vee \mathrm{b}) \wedge \mathrm{c}, \mathrm{A}=\{\mathrm{a}\} \rightarrow \varphi[\mathrm{A}]=(\mathrm{TRUE} \vee \mathrm{b}) \wedge \mathrm{c}=(\mathrm{TRUE}) \wedge \mathrm{c}$
- Remove literals \neg from clauses that contain \neg :
- They cannot be set to true anymore
- E.g. $\varphi=(\mathrm{a} \vee \mathrm{b}) \wedge \mathrm{c}, \mathrm{A}=\{\square \mathrm{a}\} \rightarrow \varphi[\mathrm{A}]=($ FALSE $\vee \mathrm{b}) \wedge \mathrm{c}=\mathrm{b} \wedge \mathrm{c}$
- Truth Value of a CNF
- An empty clause is false (FALSE \vee FALSE $\vee \ldots$...) \wedge....
- An set of 'satisfied' clauses is true (TRUE) $\wedge(T R U E) \wedge$...

DPLL Example

[Lecture] Use the DPLL algorithm (without BCP, PL and clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the positive phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg a \vee b)$
Clause 2: $(\neg b \vee c)$
Clause 3: $(\neg c \vee d)$
Clause 4: $(\neg d \vee e)$
Clause 5: $(\neg e \vee \neg a)$

DPLL Example

Step	1	2	3	4	5	6	7	8	9	10
Decision Level	0	1	2	3	4	5	5	4	3	2
Assignment	-	a	a, b	a, b, c	a, b, c, d	a, b, c, d, e	$a, b, c, d, \neg e$	$a, b, c, \neg d$	$a, b, \neg c$	$a, \neg b$
Cl. 1: $\neg a, b$	1	b	\checkmark	\{\} X						
Cl. 2: $\neg b, c$	2	2	c	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\{\} \boldsymbol{X}	\checkmark
Cl. 3: $\neg \mathrm{c}, \mathrm{d}$	3	3	3	d	\checkmark	\checkmark	\checkmark	\{\} X	\checkmark	3
Cl. 4: $\neg d, e$	4	4	4	4	e	\checkmark	\{\} \boldsymbol{X}	\checkmark	4	4
Cl. 5: $\neg e, \neg a$	5	$\neg e$	e \neg	$\neg e$	$\neg e$	\{\} \boldsymbol{X}	\checkmark	\neg	$\neg e$	$\neg e$
Decision	a	b	c	d	e	$\neg e$	$\neg d$	$\neg c$	$\neg b$	$\neg a$
Step	11		12	13	14	15				
Decision Level	1		2	3	4	5				
Assignment	$\neg a$		$\neg a, b$	$\neg a, b, c$	$\neg a, b, c, d$	$d \neg a, b, c$,				
Cl. 1: $\neg a, b$	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				
Cl. 2: $\neg b, c$	2		c	\checkmark	\checkmark	\checkmark				
Cl. 3: $\neg c, d$	3		3	d	\checkmark	\checkmark				
Cl. 4: $\neg d, e$	4		4	4	e	\checkmark				
Cl. 5: $\neg e, \neg a$	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				
Decision	b		c	d	e	SAT				

Model:

$a=\mathrm{F}, b=\mathrm{T}, c=\mathrm{T}, d=\mathrm{T}, e=\mathrm{T}$

Decision Heuristic

- Which literal to pick?
- Randomly
- According to some order
- Satisfies largest number of unsatisfied clauses
- satisfy a clause = occur in a clause
- Open Research Topic

Unit Clauses

- Unit clause:
- a clause with a single unassigned literal
- Examples:
- \{a\}
- \{-b\}

Unit Clauses

[Lecture] In the context of the DPLL algorithm, explain what a Unit Clause is. Give an example.

Unit Clauses

[Lecture] In the context of the DPLL algorithm, explain what a Unit Clause is. Give an example.

Definition - Unit Clause. A clause c is said to be a unit clause under some assignment A if the following two conditions hold:
(a) The clause c is not satisfied by A.
(b) All but one of the variables in c are given a value by A.

Therefore, there is a single literal left in the set representing the clause under the assignment.
An example would be:

- $c=\{a, b, \neg c\}$
- $A=\{\neg a, c\}$
- $c[A]=\perp \vee b \vee \perp$, in set representation: $\{c\}$

Boolean Constrain Propagation (BCP)

- Unit clause:
- a clause with a single unassigned literal
- Examples:
- \{a\}
- \{-b\}
- Unit Clause exists \rightarrow set its literal
- Otherwise: immediately FALSE
- Very simple but very important heuristic!

DPLL + BCP Example

[Lecture] Use the DPLL algorithm (without BCP, PL and clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the positive phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg a \vee b)$
Clause 2: $(\neg b \vee c)$
Clause 3: $(\neg c \vee d)$
Clause 4: $(\neg d \vee e)$
Clause 5: $(\neg e \vee \neg a)$

DPLL + BCP Example

DPLL algorithm:

Step	1	2	3	4	5	6	7	8	9	10	11
Decision Level	0	1	1	1	1	1	1	2	2	2	2
Assignment	-	a	a, b	a, b, c	a, b, c, d	a, b, c, d, e	$\neg a$	$\neg a, b$	$\neg a, b, c$	$\neg a, b, c, d$	$\neg a, b, c, d, e$
Cl. 1: $\neg a, b$	1	b	\checkmark								
Cl. 2: $\neg b, c$	2	2	c	\checkmark	\checkmark	\checkmark	2	c	\checkmark	\checkmark	\checkmark
Cl. 3: $\neg c, d$	3	3	3	d	\checkmark	\checkmark	3	3	d	\checkmark	\checkmark
Cl. 4: $\neg d, e$	4	4	4	4	e	\checkmark	4	4	4	e	\checkmark
Cl. 5: $\neg e, \neg a$	5	$\neg e$	$\neg e$	$\neg e$	$\neg e$	$\} \boldsymbol{X}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BCP	-	b	c	d	e	-	-	c	d	e	\checkmark
Decision	a	-	-	-	-	$\neg a$	b	-	-	-	SAT

Model:
$a=\mathrm{F}, b=\mathrm{T}, c=\mathrm{T}, d=\mathrm{T}, e=\mathrm{T}$

Pure Literals

- Pure Literal:
- Unassigned literal
- Complement does not occur in any unsatisfied clause
- Pure literals \rightarrow set to TRUE

DPLL + BCP + Pure Literals Example

[Lecture] Use the DPLL algorithm with Boolean Constrain Propagation and Pure Literals (without clause learning) to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the positive phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: $(\neg a \vee b)$
Clause 2: $(\neg b \vee c)$
Clause 3: $(\neg c \vee d)$
Clause 4: $(\neg d \vee e)$
Clause 5: $(\neg e \vee \neg a)$

DPLL + BCP + Pure Literals Example

DPLL algorithm:

Step	1	2	3	4	5
Decision Level	0	0	0	0	0
Assignment	-	$\neg a$	$\neg a, \neg b$	$\neg a, \neg b, \neg c$	$\neg a, \neg b, \neg c, \neg d$
Cl. 1: $\neg a, b$	1	\checkmark	\checkmark	\checkmark	\checkmark
Cl. 2: $\neg b, c$	2	2	\checkmark	\checkmark	\checkmark
Cl. 3: $\neg c, d$	3	3	3	\checkmark	\checkmark
Cl. 4: $\neg d, e$	4	4	4	4	\checkmark
Cl. 5: $\neg e, \neg a$	5	\checkmark	\checkmark	\checkmark	\checkmark
BCP	-	-	-	-	-
PL	$\neg a$	$\neg b$	$\neg c$	$\neg d$	-
Decision	-	-	-	-	SAT

Model:

$a=\mathrm{F}, b=\mathrm{F}, c=\mathrm{F}, d=\mathrm{F}, e=\mathrm{F}$

DPLL Heuristics

[Lecture] In the context of the DPLL algorithm, explain why it is advantageous to apply Boolean Constrain Propagation (BCP) and Pure Literals (PL) before making a decision.

DPLL Heuristics

[Lecture] In the context of the DPLL algorithm, explain why it is advantageous to apply Boolean Constrain Propagation (BCP) and Pure Literals ($P L$) before making a decision.

Boolean Constraint Propagation and Pure Literals are so-called heuristics. BCP and PL capture when the choices we can make are restricted in two different ways. It is advantageous to apply these heuristics before making a decision, since it reduces the amount of different assignments we have to check.

Clause Learning

Problem is with the literal "a": \rightarrow No need to try c=TRUE!

Clause Learning

1. $(a \vee \neg c)$
2. $(b \vee \neg c)$
3. $(\neg a \vee \neg b \vee c)$
4. $(\neg a \vee \neg b)$
5. $(\neg a \vee b)$
6. $(a \vee \neg b)$

UNSAT

7. $(a \vee b)$

Conflict Graphs

1. $(a \vee \neg c)$
2. $(b \vee \neg c)$
3. $(\neg a \vee \neg b \vee c)$
4. $(\neg a \vee \neg b)$
5. $(\neg a \vee b)$
6. $(a \vee \neg b)$
7. $(a \vee b)$

Conflict Driven Clause Learning

[Lecture] In the context of the DPLL algorithm, explain what Conflict-Driven Clause Learning is and why most modern SAT solvers use this technique.

Conflict Driven Clause Learning

[Lecture] In the context of the DPLL algorithm, explain what Conflict-Driven Clause Learning is and why most modern SAT solvers use this technique.

The idea of conflict-driven clause learning is not to repeat steps that lead to a conflict.

When executing the DPLL algorithm we can maintain a so-called conflict graph. We can use this graph to deduce which variables lead to a conflict. In Conflict-Driven Clause Learning different SAT solvers apply different techniques to extract new learned clauses from this graph.
The learned clauses help the SAT solver to no repeat mistakes in different execution branches.

Conflict Graphs

1. $(a \vee \neg c)$
2. $(b \vee \neg c)$
3. $(\neg a \vee \neg b \vee c)$
4. $(\neg a \vee \neg b)$
5. $(\neg a \vee b)$

6. $(a \vee \neg b)$
7. $(a \vee b)$

No decision was necessary
\rightarrow We learn: UNSAT

Backtrack Level

- Ongoing Research Problem
- In this course:
- \rightarrow earliest level where conflict clause is a unit clause
- New clause can immediately be used

DPLL + BCP + PL + CDCL

[Lecture] Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the negative phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg a, \neg b\}$
Clause 2: $\{a, c\}$
Clause 3: $\{b, \neg c\}$
Clause 4: $\{\neg b, d\}$
Clause 5: $\{\neg c, \neg d\}$
Clause 6: $\{c, e\}$
Clause 7: $\{c, \neg e\}$

DPLL + BCP + PL + CDCL

[Lecture] Use the DPLL algorithm with conflict-driven clause learning to determine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting with the negative phase. For conflicts, draw conflict graphs after the end of the table, and add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table is unsatisfiable.

Clause 1: $\{\neg a, \neg b\}$
Clause 2: $\{a, c\}$
Clause 3: $\{b, \neg c\}$
Clause 4: $\{\neg b, d\}$
Clause 5: $\{\neg c, \neg d\}$
Clause 6: $\{c, e\}$
Clause 7: $\{c, \neg e\}$

SAT Solver Output

- Satisfiable:
- Satisfying Assignment
- Unsatisfiable
- Proof of Unsatisfiability

Proving Unsatisfiability

- Resolution Rule:
$\frac{\left(a \vee b_{1} \vee \ldots \vee b_{n}\right)\left(\neg a \vee c_{1} \vee \ldots \vee c_{m}\right)}{\left(b_{1} \vee \ldots \vee b_{n} \vee c_{1} \vee \ldots \vee c_{m}\right)}$
- Remember:

$$
\frac{\mathrm{a} \quad \neg \mathrm{a}}{\text { FALSE }}
$$

- "Derived" rule for natural deduction

Prove Learned Clause

- Turn Conflict Graph Around
- Select clause that implies conflict
- Iteratively, resolve while backtraversing graph

Cheap Resolution Proof

- Turn All Conflict Graphs Around

1. $(a \vee \neg c)$
2. $(b \vee \neg c)$
3. $(\neg a \vee \neg b \vee c)$
4. $(\neg a \vee \neg b)$
5. $(\neg a \vee b)$
6. $\quad(a \vee \neg b)$
7. $(a \vee b)$

Cheap Resolution Proof

- Turn All Conflict Graphs Around

1. $(a \vee \neg c)$
2. $(b \vee \neg c)$
3. $(\neg a \vee \neg b \vee c)$
4. $(\neg a \vee \neg b)$
5. $(\neg a \vee b)$
6. $\quad(a \vee \neg b)$
7. $(a \vee b)$

Cheap Resolution Proof

[Lecture] Consider the following conflict graph with the following set of clauses:

Clause 1: $\{\neg a, \neg c, \neg d\}$
Clause 2: $\{a, \neg d\}$
Clause 3: $\{b, d\}$
Clause 4: $\{\neg b, d, e\}$
Clause 5: $\{\neg b, \neg e\}$
Clause 6: $\{c, \neg e\}$
Clause 7: $\{c, e\}$
Give the resolution proof for the given conflict graph and clauses and state the clause to be learned from the conflict.

Cheap Resolution Proof

[Lecture] Consider the following conflict graph with the following set of clauses:

Clause 1: $\{\neg a, \neg c, \neg d\}$
Clause 2: $\{a, \neg d\}$
Clause 3: $\{b, d\}$
Clause 4: $\{\neg b, d, e\}$
Clause 5: $\{\neg b, \neg e\}$
Clause 6: $\{c, \neg e\}$
The new learned clause is therefore Cl. 8: $\neg a \vee b$
Clause 7: $\{c, e\}$
Give the resolution proof for the given conflict graph and clauses and state the clause to be learned from the conflict.

DPLL + BCP + PL + CDCL

- Binary Search Tree
- Worst Case: Exponential Time
- Pruning
- Boolean Constraint Propagation (BCP)
- Pure Literals
- Learn Conflict Clauses

DPLL - Summary

- As long as there is no conflict on decision level 0 :
- Try to perform BCP, if there is no unit clause,
- try to perform PL, if there is no pure literal,
- make a decision.
- Update all clauses.
- If there is a conflict: Construct graph and resolution proof, add newly learned clause.
- If all clauses are empty and no conflict: Report satisfying model.
- If there is a conflict on decision level 0 :
- Construct graph and resolution proof

Summary

- DPLL Algorithm
- Binary Search Tree
- Worst-Case Exponential
- Pruning
- Boolean Constraint Propagation
- Pure Literals
- Learned Clauses
- Resolution Proofs
- Resolution Rule
- "Turn Conflict Graph around"

Thank You

