TU

Grazm

Logic and Computability

Lecture 4 PASSION

TECHNOLOGY

THE BoAT ONLY HOLDS TWo, BUT You
CANT (EAVE. THE GOAT WITH THE
CABBAGE OR THE WOLF WITH THE GOAT.

SAT Solver P

Bettina Konighofer Stefan Pranger —

bettina.koenighofer@lamarr.at stefan.pranger @iaik.tugraz.at (WY DI0 YU FAVE AWOLF?|
https://xkcd.com/287/ Mﬁﬂ

Motivation

" Applications
" HW and SW Verification
" Bounded Model Checking
(Hardware) Equivalence Checking
" Circuit Synthesis
" Planning (e.g., air-traffic control, telegraph routing)
" Scheduling (sport tournaments)
" Finite mathematics
" Cryptanalysis

Motivation - SAT Encoding

" Automatically generated from problem specifications

p cnf 51639 368352 ~X, V X,
—160 X, V X
~150

] witaf) X, VX
—130

~120

-1-80

9150

9140 Should x,be set to false?
—9130

-9 -120

—9110

—9100

—9-160

~17 230

17 220

10 Pages Later

" Automatically generated from problem specifications

18590

18510

177 169 161 153 145 137 129 121 113 105 97
89 81 73 65 57 49 41

332517911850

186 —137 0
186 —188 0

1.e., (X{77 OF X g9 OF X451 OF X453 ---
X35 OF X, OF X,, OF Xg OF X, Or (not X))

Note x,

= 4.000 Pages Later

" Automatically generated from problem specifications

10236 —10050 O

10236 —10051 0

10236 —10235 0

10008 10009 10010 10011 10012 10013 10014
10015 10016 10017 10013 10019 10020 10021
10022 10023 10024 10025 10026 10027 10023
10029 10030 10031 10032 10033 10034 10035
10036 10037 10086 10087 10088 10089 10090
10091 10092 10093 10094 10095 10096 10097
10098 10099 10100 10101 10102 10103 10104
10105 10106 10107 10108 —55 —54 53 —52 —51 50
10047 10048 10049 10050 10051 10235 —10236 0
10237 —10008 0

10237 —10009 0

10237 —10010 0

= Finally, 15.000 Pages Later

—7 260 0

7 —2600

1072 1070 0

—15 —-14 —-13 12 —-11 100
—15 —-14 —-13 -12 -1110 0
—15 —-14 —-13 -1211 -100
—15 —14 —13 —-121110 0
—7-6-5-4-3-20
—7—-6-5-4-320
—7—-6-5-43-20
—7—-6-5-4320

185 0

 How long to solve it?
 Modern SAT solver needs just a few seconds!

The SAT Problem

[Lecture| Define the Boolean Satisfiability Problem?

i The SAT Problem

[Lecture| Define the Boolean Satisfiability Problem?

Given a propositional formula ¢, the Boolean Satisfiability Problem asks whether there
exists a model such that the formula evaluates to true.

= The SAT Problem

[Lecture] What is the complexity of the SAT-Problem? What does its complexity imply?

The SAT Problem

[Lecture] What is the complexity of the SAT-Problem? What does its complexity imply?

The SAT-Problem is NP-complete.
Its complexity implies that it is very unlikely that there exists any polynomial algorithm.

Outline

" Normal Forms

" DPLL Algorithm
" Boolean Constrain Propagation
" Pure Literals

" Conflict-Driven Clause Learning

" Resolution Proofs
" Resolution Rule

" Tseitin’s Algorithm (if time allows it)

: Terminology

" Literal: propositional variable or its negation
" Example: p,q,r

" Clause: disjunction of literals
" Example: (pvgqVv-r)

" Cube: conjunction of literals
" Example: (gA—gA-T)

3
Normal Forms

" Disjunctive Normal Form (DNF)
" Disjunction of cubes:

(a,AayA...Aa,)V(b,Ab,A...ADb,)V ...
where each a;, b is a literal.

" Conjunctive Normal Form (CNF)
" Conjunction of clauses:

(a,vVa,Vv..va,)A(b,;Vb,V..Vb,)V..

where eacha,, b, is a literal.

Normal Forms

A C Ergebnis Klausel

0 0 0 AvBvC

0 1 0 AvBv-C
0 0 1 "AABA-C
0 1 1 S"AABAC
1 0 0 "AvBvC
1 i 1 AABAC
1 0 0 S"Av-BvC
1 1 1 AABAC

DNF: (FAABA-C)V("AABAC)V(AA-BAC)V(AABAC)

KNF: (AvBVvC)A(AvBVYC)A(FAVBVC)A(-Av BV C)

_.‘,____

-

https://de.wikipedia.org/wiki/Konjunktive _Normalform

15
. Normal Forms

Lecture| Given the formula ¢ = (¢ = p)A(rV—p). Compute its representation in Disjunctive
Normal Form (DNF') using a truth table.

Lecture| Given the formula ¢ = (¢ — p) A (rV —p). Compute its representation in Conjunc—'
tive Normal Form (CNF) using a truth table.

Iy

rvV-p | q

s

H| = 1| H| s
| S| | | =) =] | <
e e Tl [l Tl TR
ol TSI
T

I I P)
| | | | | | | (S

Lecture]

Lecture]

Iy

6
Normal Forms

Given the formula ¢ = (¢ = p)A(rV—-p). Compute its representation in Disjunctive

Normal Form (DNF') using a truth table.

Given the formula ¢ = (¢ — p) A (r vV —p). Compute its representation in Conjunc—'
tive Normal Form (CNF) using a truth table.

rV -p

s

H| = 1| H| s
=S| =] | | = | | s

| P | | | | |) |
ol TSI
T

IR = T

el e e e e e e RS

-
-

-
-

DNF(p) =(=p A =g A -)
V(-pA—-gAT)
(PA—-gAT)

(

PAGAT)

Vv
Vv

17
a Normal Forms

Lecture| Given the formula ¢ = (¢ = p)A(rV—p). Compute its representation in Disjunctive
Normal Form (DNF') using a truth table.

Lecture| Given the formula ¢ = (¢ — p) A (rV —p). Compute its representation in Conjunc—'
tive Normal Form (CNF) using a truth table.

To[q [r[p[rVvopla—=p] ¢ DNF(p) =(—p A =g A)
F|F|FI[T T T T V(=p A =g AT)
F | F | T| T T T T ph—gAr)
F| T |F| T T F F | o A Ag D
F| T |TI| T T F F | g
TIFIFIF| F | T I|F 4= CNF(¢) =(pV =g V 7)
r|F T F T Tr |7 ApV —q V —r)
T | T | F F F T F h ;\(—.p\fqu)
T| T|TI| F T T T

A(=pV —gVr)

SAT-Solver

Formula in CNF

Satisfiable
(+ model)

SAT
Solver

DPLL Algorithm

" Due to Davis, Putnam, Loveland, Logemann

" M. Davis, H. Putnam. “A computing procedure for quantification
theory”. Journal of the ACM, 7:201-215, 1960

" M. Davis, G. Logemann, and D. Loveland. “A machine program for
theorem-proving”. Communications of the ACM, 5:394-397,

1962

" Basis for most modern SAT solvers

=) Notation

* : formula in CNF
*Eg,@=(aVvVbV-dAC

* A: Assignment

* given in set representation, e.g.: {—a,b,d}
* conjunction of literals, e.g. A=—-a A b A d
* Total or partial Assignment

* p[A]: ¢ with variables set according to A
* E.g., O[A] =

Notation

* : formula in CNF
*Eg,@=(aVbVv-dAC

* A: Assignment

* given in set representation, e.g.: {—a,b,d}
* conjunction of literals, e.g. A=—-a A b A d
* Total or partial Assignment

* p[A]: ¢ with variables set according to A
* E.g., [A] = (FALSE A TRUEA = TRUE) Ac= ¢

Basis Idea - Backtracking Binary Search

" Recursively search an A:
" @[A]is TRUE
" Proves ¢ satisfiable
" “A’is a satisfying model

" No such A exists
" @ is unsatisfiable

CNF is a Set of Clauses

" Formula: " Set Representation:
* 9= +C={
@V -bVvcA fa,—b,cl,

(—aVv —d)A {—a,—d},
(—c) {—c}
}

Setting Literals

" Compute oll], for a literal I

" Remove all clauses that contain I:

" They are true

" Eg. ¢o=(@Vvb)Arc, A={a}l = ¢[A] =(TRUE Vv b)Ac=(TRUE)Ac
" Remove literals —I from clauses that contain —l:

" They cannot be set to true anymore
" Eg.o=(aVvb)Ac,A={-a} = @[A]=(FALSEVb)Ac=bAcC

" Truth Value of a CNF
" An empty clause is false (FALSE Vv FALSE v ...) A
" An set of ‘satisfied’ clauses is true (TRUE) A (TRUE) A ...

DPLL Example

[Lecture] Use the DPLL algorithm (without BCP, PL and clause learning) to determine
whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order
starting with the positive phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: (—a V b)

Clause 2: (—bV ¢)

Clause 3: (—eV d)

Clause 4: (—d V e)
(

Clause 5: (—e V —a)

DPLL Example

Step 1| 2 6 7 8 9 10
Decision Level |0 1 | 2 3 4 5! D 4 3 2
Assignment -l a |a,bla,b,e|a,b.c,d|a,b,e,d.e|a,b,c.d,—e|a,b.c,~d|a,b,—c|a,—b
Cl. 1: —a.b L{b |V v v v v v v {} X
Cl. 2: =b.,c 212 | ¢ v v v v v {} X v
Cl. 3: —e,d 303] 3 d v v v {} X v 3
Cl. 4: —d, e 414 | 4 4 e v {} X v 4 4
CL 5: —e,ma |5|—e|ne| —e —e {+ X v —e —e —e
Decision al b | c d e e —d —c —b —a
Step 11| 12 13 14 15
Decision Level | 1 2 3 4 5
Assignment —a|—a,b|-a,b,e|-ab e, d|—a,b e, d e
Cl. 1. —a.b v | v v v
Cl. 2: =b,e 2 c v v v
Cl. 3: —e,d 3 3 d v v
Cl. 4: —~d. e 4| 4 4 e v
Cl. 5: me,ma |V | V v v v
Decision b c d e SAT

Model:

a=F.b=T,ce=T,d=T,e=T

Decision Heuristic

" Which literal to pick?
" Randomly
" According to some order
" Satisfies largest number of unsatisfied clauses
" satisfy a clause = occur in a clause

" Open Research Topic

% Unit Clauses

" Unit clause:
" aclause with a single unassigned literal

" Examples:

" {3}
" {-b}

Unit Clauses

[Lecture] In the context of the DPLL algorithm, explain what a Unit Clause is. Give an
example.

Unit Clauses

[Lecture] In the context of the DPLL algorithm, explain what a Unit Clause is. Give an
example.

Definition - Unit Clause. A clause c is said to be a unit clause under some assignment
A if the following two conditions hold:

(a) The clause c is not satisfied by A.
(b) All but one of the variables in ¢ are given a value by A.

Therefore, there is a single literal left in the set representing the clause under the assign-

ment.

An example would be:
e ¢c=1{a,b,—c}
e A={—a,c}

e c[A] =1 VbV L, in set representation: {c}

Boolean Constrain Propagation (BCP)

" Unit clause:
" aclause with a single unassigned literal

" Examples:

" {3}
" {-b}

" Unit Clause exists — set its literal
" Otherwise: immediately FALSE
" Very simple but very important heuristic!

DPLL + BCP Example

[Lecture| Use the DPLL algorithm (without BCP, PL and clause learning) to determine
whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order
starting with the positive phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: (—a V b)

Clause 2: (—bV ¢)

Clause 3: (—¢V d)

Clause 4: (—~dV e)
(

Clause 5: (—e V —a)

DPLL + BCP Example

DPLL algorithm:

Step 112 3 4 5] 6 7| 8 9 10 11
Decision Level [0 1 | 1 1 1 1 1 2 2 2 2
Assignment -l a |ablabcla.bed|ab e de|-a|-a,b|—a.b,c|—a.be.d|—a.bed, e
ClL 1: —a,b 11 b | v v v v v | v v v
Cl. 2: —=b,c 212 | ¢ v v v 2 c v v v
Cl 3: —e,d 3031 3 d v v 3 3 d v v
Cl 4: —d, e 414 | 4 4 € v 4 | 4 4 € v
CL 5: —e,—a |5|—e|—e| —e —e {(}x |v | V v v v
BCP b | e d € - - ¢ d € v
Decision al - | - - - —a b | - - - SAT
Model:

a=F,b=T,c=T,d=T,e=T

“ Pure Literals

" Pure Literal:
" Unassigned literal
* Complement does not occur in any unsatisfied clause

" Pure literals = set to TRUE

DPLL + BCP + Pure Literals Example

[Lecture| Use the DPLL algorithm with Boolean Constrain Propagation and Pure Literals
(without clause learning) to determine whether or not the set of clauses given is satisfiable.
Decide variables in alphabetical order starting with the positive phase. If the set of clauses
resulted in SAT, give a satisfying model.

Clause 1: (—a V b)
Clause 2: (—bV c)
Clause 3: (—cV d)
Clause 4: (—d V e)

Clause 5: (—e V —a)

DPLL + BCP + Pure Literals Example

DPLL algorithm:

Step 1 2 3 4 5
Decision Level | 0 0 0 0
Assignment - —a | —a,—b | —a,—-b, e | —a, b, —e, ~d
Cl 1: —a,b 1 | v v v v
Cl 2: =b, ¢ 2 2 v v v
ClL 3: —c.d 3 3 3 v v
ClL 4: —d,e 4 4 4 4 v
ClL 5: —e.—a 5 v v v v
BCP - - - - -
PL —a | b - = -
Decision - - - - SAT
Model:

a=F.b=F.c=F.d=F, e=F

DPLL Heuristics

[Lecture] In the context of the DPLL algorithm, explain why it is advantageous to apply
Boolean Constrain Propagation (BCP) and Pure Literals (PL) before making a decision.

DPLL Heuristics

[Lecture] In the context of the DPLL algorithm, explain why it is advantageous to apply
Boolean Constrain Propagation (BCP) and Pure Literals (PL) before making a decision.

Boolean Constraint Propagation and Pure Literals are so-called heuristics. BCP and
PL capture when the choices we can make are restricted in two different ways. It is
advantageous to apply these heuristics before making a decision, since it reduces the
amount of different assignments we have to check.

Clause Learning

N Ok Db

Without learning

/

(a VvV —c) ,

(b V —c) —C \
(ﬂa\/ﬂb\/c

=5 ALA
(ﬂa\/b

(

(

avV _lb UNSAT UNSAT \UNSAT UNSAT

aVb)

I((”

Problem is with the litera

— No need to try c=TRUE!

o Clause Learning

©
/e

— Learn New Clause: (a)

N oW N R
|
O
<
J
2

Conflict Graphs

Internal nodes:

;' 22 v _'C)) Root nodes: Implied (by BCP)
: V =C Decisions /
3. (maVv -=bVc) q
6
4. (—a\V —b) \
5. (—aVDb) 7 @
6. (aV —b) / @D/ \
7. (aVvb) Clause numbers: Conflict Node
b is implied by

—a via clause 7

Conflict Driven Clause Learning

[Lecture| In the context of the DPLL algorithm, explain what Conflict-Driven Clause Learn-
ing is and why most modern SAT solvers use this technique.

Conflict Driven Clause Learning

[Lecture| In the context of the DPLL algorithm, explain what Conflict-Driven Clause Learn-
ing is and why most modern SAT solvers use this technique.

The idea of conflict-driven clause learning is not to repeat steps that lead to a conflict.

When executing the DPLL algorithm we can maintain a so-called conflict graph. We can
use this graph to deduce which variables lead to a conflict. In Conflict-Driven Clause
Learning different SAT solvers apply different techniques to extract new learned clauses
from this graph.

The learned clauses help the SAT solver to no repeat mistakes in different execution
branches.

= Conflict Graphs

N O o A WODN R
O L
< <
S |
=

Backtrack Level

* Ongoing Research Problem

* |[n this course:
e — earliest level where conflict clause is a unit clause
 New clause can immediately be used

DPLL + BCP + PL + CDCL

[Lecture] Use the DPLL algorithm with conflict-driven clause learning to determine whether
or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting

with the negative phase. For conflicts, draw conflict graphs after the end of the table, and
add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: {—a, b}
Clause 2: {a,c}
Clause 3: {b,—c}
Clause 4: {-b,d}
Clause 5: {—¢,—d}
Clause 6: {c,e}
Clause 7: {c,—e}

DPLL + BCP + PL + CDCL

[Lecture] Use the DPLL algorithm with conflict-driven clause learning to determine whether
or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting

with the negative phase. For conflicts, draw conflict graphs after the end of the table, and
add the learned clause to the table.

If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: {—a, b}
Clause 2: {a,c}
Clause 3: {b,—c}
Clause 4: {-b,d}
Clause 5: {—¢,—d}
Clause 6: {c,e}
Clause 7: {c,—e}

https://git.pranger.xyz/sp/LAC-Questionnaire/releases/download/release_three/
guestionnaire_with_solutions_three.pdf

https://git.pranger.xyz/sp/LAC-Questionnaire/releases/download/release_three/questionnaire_with_solutions_three.pdf
https://git.pranger.xyz/sp/LAC-Questionnaire/releases/download/release_three/questionnaire_with_solutions_three.pdf

SAT Solver Output

 Satisfiable:
* Satisfying Assignment

* Unsatisfiable
* Proof of Unsatisfiability

o Proving Unsatisfiability

e Resolution Rule:

(aVb,V..VDb) (aVvc, V..VvVc)

(b,V..Vb Vc,V..Vc)

e Remember: P —3
FALSE

e “Derived” rule for natural deduction

Prove Learned Clause

* Turn Conflict Graph Around
* Select clause that implies conflict

* |teratively, resolve while back-
traversing graph

7.aVDhb 6.aV —b

8.a

Cheap Resolution Proof

B Turn All Conflict Graphs Around

1. (aV —c)

N Ok

7.aVDhb 6.aV —b 5.—-aVb 4. -aV —b

8.a —a
FALSE

= Cheap Resolution Proof

B Turn All Conflict Graphs Around

1. (aV —c)

N Ok

7.aVDhb 6.aV —b 5.—-aVb 4. -aV —b

8.a —a
FALSE

Cheap Resolution Proof

[Levture] Consider the following conflict graph with the following set of clauses:

%%@

Clause 1: {—a, ¢, d}
Clause 2: {a,d}
Clause 3: {b,d}
Clause 4: {-b,d, e}
Clause 5: {—b, —e}
Clause 6: {c,—e}
Clause T: {c,e}

Give the resolution proof for the given conflict graph and clauses and state the clause to be
learned from the conflict.

Cheap Resolution Proof

[Levture] Consider the following conflict graph with the following set of clauses:

%%@

Clause 1: {—a, ¢, d}

Clause 2: {a,d} @ cV —e @ cVe
Clause 3: {b,d} c @ —a V eV —-d

Clause 4: {-b,d, e} K i

—a VDb
Clause 5: {-b, e}

Clause 6: {c,—e}
Clause T: {c,e}

The new learned clause is therefore Cl. 8: —a Vv b

Give the resolution proof for the given conflict graph and clauses and state the clause to be
learned from the conflict.

Bl DPLL + BCP + PL + CDCL

e Binary Search Tree
 Worst Case: Exponential Time

* Pruning
* Boolean Constraint Propagation (BCP)
* Pure Literals
e Learn Conflict Clauses

DPLL - Summary

® As long as there is no conflict on decision level O:
® Try to perform BCP, if there is no unit clause,
® try to perform PL, if there is no pure literal,

® make a decision.
> Update all clauses.
> |f there is a conflict: Construct graph and resolution proof, add newly learned clause.
> |f all clauses are empty and no conflict: Report satisfying model.

® If there is a conflict on decision level O:

® Construct graph and resolution proof

Summary

 DPLL Algorithm

e Binary Search Tree
 Worst-Case Exponential

* Pruning
e Boolean Constraint Propagation
e Pure Literals
e Learned Clauses

e Resolution Proofs
e Resolution Rule
e “Turn Conflict Graph around”

X LOMOIT
Thank You

https://xkcd.com/1033/

	Slide 1
	Motivation – Equivalence Checking
	Motivation – SAT Encoding
	10 Pages Later
	4.000 Pages Later
	Finally, 15.000 Pages Later
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Outline
	Terminology
	Normal Forms
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Clause Learning
	Learning
	Conflict Graph
	Slide 42
	Slide 43
	Backtracking
	Backtrack Level
	Slide 46
	Slide 47
	SAT Solver Output
	Proving Unsatisfiability
	Prove Learned Clause
	Cheap Resolution Proof
	Slide 52
	Slide 53
	Slide 54
	DPLL + BCP + PL + Learning
	Slide 56
	Summary
	Thank You

