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11
Temporal Logic

This chapter gives a brief introduction to temporal logic. Temporal logic is
used to specify the dynamic behavior of systems. A formula in temporal logic
might, for example, specify that a property holds in the next time step or in 3
time steps, it can express that eventually some goal state is reached, or it can
specify that certain error states shall never be visited, or that some good event
is happening infinitely often.

In this chapter, we will look at the intuitive semantics and syntax of the
temporal logic CTL?. We will model systems via Kripke structures (Transition
systems with additional labels in the states), and the temporal logic formulas
will express properties of these Kripke structures.

We will briefly discuss the application of temporal logic in formal verification,
where it is used to state temporal properties of systems. For instance, one
property might express that whenever a request is made, access to a resource is
eventually granted, but two request will never be granted simultaneously. Such
statements can easily be expressed in CTL?.

11.1 Kripke Structures

In order to make observations about particular states of a system and to reason
about these states, we model systems such that each state is labeled with a set of
atomic propositions (Boolean variables that are true in that state). A transition
system enriched with such a state-labeling is called a Kripke structure. The set
of atomic prepositions used in the labels of the states are denoted as AP .

3
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Definition - Kripke structure. Given a set of atomic propositions AP ,a
Kripke structure K is a tuple K = (S, S0, R, L) where

1. S, S0, and R are defined as for transition systems,

2. L : S → 2AP is a function that labels each state with the set of those atomic
propositions that are true in that state.

The labeling function L defines for each state s ∈ S the set L(s) of all atomic
propositions that are valid in s.

Example. Draw the graph of a Kripke structure K1 with: S = {s1, s2, s3},
S0 = {s1}, R = {(s1, s2), (s2, s1), (s3, s2)}, AP = {p, q} and L = {s1, {p}, s2, {p, q}, s3, ∅}.

Solution.

Figure 11.1: Graph for Kripke structure K1.

Example. Consider the example of an light switch. Initially, the light is
off. Once a button is pressed, the light is turned on. To turn the light off, the
button has to be released and pressed again. Model the light switch as Kripke
structure.

Solution. A state is labeled with the label 1 if the light is on, and with label
0 if the light is off. Similarly, we use the label r for states in which the button is
released, and p for those states in which the button is pressed.

In K2, initially, the button may either be pressed or released. This is modeled
by means of two initial states. As example for a transition, consider the state
labeled with (0, r): to model the case the button is pressed, there is a transition
to the state labeled (1, p). Otherwise, the system remains in state (0, r) by means
of a self-transition.

Figure 11.2: Graph for Kripke structure K2.

Definition - Paths and words of Kripke structures. A path of the
Kripke structure K is a sequence of states ρ = s1, s2, s3, . . . such that for each
i > 0, R(si, si+1) holds. The word on the path ρ is a sequence of sets of the
atomic propositions w = L(s1), L(s2), L(s3), . . . over alphabet 2AP .
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Example. Given the Kripke structure K1 of Figure 11.1. Give the word for
the infinite path ρ = s1, s2, s1, s2, s2, · · · = s1, s2, s1, (s2)

ω.
Solution. The path ρ produces the infinite word

w = {p}, {p, q}, {p}, {p, q}, {p, q}, {p, q} · · · = {p}, {p, q}, {p}, ({p, q})ω.

11.2 Computation Tree Logic CTL?

The intuitive semantics of CTL? is based on the notion of computation trees.
Given a Kripke structure K with initial state s0, its computation tree is formed
by unwinding the structure into a tree with the root being s0, as shown in
Figure 11.3.

Figure 11.3: Left: Kripke structure, Right: Corresponding computation tree

The computation tree shows all of the possible paths and words (executions
of the system) starting from s0. In general, we require that every state of the
Kripke structure has at least one outgoing edge. Therefore, all branches of the
tree are infinite.

The temporal logic CTL? has three kinds of operators: logical operators
(¬,∨,∧ . . . ), temporal operators, and path quantifiers, to specify properties of
Kripke structures. While path quantifiers describe properties of a state, temporal
operators describe properties of paths. The corresponding formulas are called
state formulas and path formulas.

11.2.1 Temporal Operators

The temporal operators describe properties that hold along a given infinite path
through the computation tree. We discuss the intuitive meaning of four basic
operators below, assuming ϕ and ψ are formulas describing state properties.

• neXt - Xϕ: ϕ has to hold at the next state.
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• Future (Finally, Eventually) - Fϕ: ϕ eventually has to hold somewhere
on the subsequent path.

• Globally (Always) - Gϕ: ϕ has to hold on the entire subsequent path.

• Until - ϕUψ: ψ holds at the current or a future position, and ϕ has to
hold until that position. At that position ϕ does not have to hold any
more.

Their intuitive meaning of the operators is also presented in Figure 11.4. In
the figure, p and q are formulas describing state properties.

Figure 11.4: Illustration of temporal operators on an infinite path. Circles and
squares represent states along the path and arrows represent transitions
between states. The states are labeled with their atomic propositions.

11.2.2 Path Quantifiers

CTL? defines properties of the Kripke structure that models a system by defining
properties of the corresponding computation tree. To reason about the branching
structure of the tree, CTL? has the following two path quantifiers:

• All - Aϕ: ϕ has to hold on all paths starting from the current state.

• Exists - Eϕ: There exists at least one path starting from the current state
where ϕ holds.

Figure 11.5 gives a few examples of computation trees satisfying simple CTL?

formulas, consisting of a path quantifier and a temporal operator.

11.2.3 Syntax of CTL?

The syntax of propositional CTL? extends propositional logic by temporal op-
erators and path quantifiers. We distinguish between two types of formulas in
CTL?: state formulas (which are true in a specific state) and path formulas
(which are true along a specific path).

Definition - Syntax of CTL?. Let AP be the set of atomic propositions.
The syntax of state formulas is given by the following rules:
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Figure 11.5: Example CTL? properties

• If p ∈ AP , then p is a state formula.

• If ϕ and ψ are state formulas, then ¬ϕ, ϕ∨ψ, and ϕ∧ψ are state formulas.

• If f is a path formula, then Ef and Af are state formulas.

The syntax of path formulas is given by the following rules:

• If f is a state formula, then f is also a path formula.

• If f and g are path formulas, then ¬f , f ∨g, f ∧g, Xf , Ff , Gf , and fUg
are path formulas.

CTL? is the set of state formulas defined by the rules above. Therefore,
CTL? formulas are Boolean propositions, temporal formulas with a leading path
quantifier and Boolean combinations thereof.

11.2.4 Checking Properties of Kripke Structures

Given a Kripke structure K.

• If ϕ is a state formula, s � ϕ means that ϕ holds at state s in K.

• If ϕ is a path formula, ρ � ϕ means that ϕ holds along path ρ in K.

Example. Consider the Kirpke structure and its computation tree from
Figure 11.3. Let ρ1 and ρ2 be the leftmost and rightmost paths, respectively.
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Answer the following questions:

• Does ρ1 satisfy the formula ϕ1 := Gb?

• Does ρ2 satisfy the formula ϕ1 := Gb?

• Is the formula ϕ2 := EGb true in the initial state s0?

• Is the formula ϕ3 := AGb true in the initial state s0?

• Is the formula ϕ4 := EXX(a ∧ b) true in the initial state s0?

Solution.

• Yes, ρ1 � Gb holds since the property b holds in every state.

• No, ρ2 2 Gb since b only holds in the first state and not on all states along
ρ2.

• Yes, s0 � EGb holds since there is a path (ρ1) that satisfies Gb.

• No, s0 2 AGb since there is at least one path (ρ2) that does not satisfy Gb.

• Yes, s0 � EXX(a ∧ b) holds since the third state of ρ1 is labeled with
{a, b}.

Chapter 10 was based on the following book.

• Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled,
Helmut Veith: Model checking, 2nd Edition. MIT Press 2018, ISBN 978-
0-262-03883-6
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