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Motivation 

▪ We want write formulas like
▪ 𝜑 = 𝑥 ≥ 0 ∧ 𝑥 + 𝑦 ≤ 2 ∨ 𝑥 + 𝑦 ≥ 6 ∧ 𝑥 + 𝑦 ≥ 1 ∨ 𝑥 − 𝑦 ≥ 4

▪ using
▪ Real Numbers, Integers, Function and Predicates like +,-,<,=,>…

▪ Theory
▪ Axioms that define interpretation/meaning for functions and predicates

▪ Satisfiability Modulo Theory
▪ Solving first-order formulas within a theory 
▪ → Checking whether a formula logic is satisfiable modulo theory means that we 

only consider models that interpret functions and predicates as defined by the 
axioms in the theory. 



Outline
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▪ Definition and Notations
▪ What is a theory?
▪ …

▪ Implementation of SMT Solvers
▪ Eager Encoding

explicit encoding of axioms

vs

▪ Lazy Encoding
use specialized theory solvers 
in combination with SAT solvers 
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Definition of a First-Order Theory 𝓣:

▪ Signature Σ
▪ is a set of constants, predicate and function symbols
▪ besides the logical symbols (logical connectives like ∧,∨ ⋯, variables like 𝑥, 𝑦 …, 

and quantifiers like  ∀𝑥), a formula only has symbols from Σ
▪ → Do not use any non-logical symbols 

(constants, predicates or functions) not contained in Σ

▪ Set of Axioms 𝒜
▪ Sentences (=Formulas without free variables) 

with symbols from Σ only
▪ Gives meaning to the predicate and function symbols

Definition of a Theory
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Example: 𝜑:= 𝑥 ≥ 0 ∧ 𝑥 + 𝑦 ≤ 2 ∨ 𝑥 + 𝑦 ≥ 6

Definition of 𝓣𝐋𝐈𝐀:

▪ ΣLIA ∶= {… ,−3,−2,−1,0,1,2,3… ,=,+,−,≠,<,>,≤,≥}

▪ 𝒜𝐿𝐼𝐴 : defines the usual meaning to all symbols
▪ Maps constants to their corresponding value in 
▪ E.g., The function + is interpreted as the addition function, e.g.
▪ …
▪ 0+0 → 0
▪ 0+1→ 1….

Theory of Linear Integer Arithmetic 𝓣𝐋𝐈𝐀
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Example: 𝜑 ≔ 𝑥 = 𝑏 ∧ 𝑦 ≠ 𝑥 → (𝑤 = 𝑏)
Definition of 𝓣𝐄:

▪ ΣE ∶= {𝑎0, 𝑏0, 𝑐0, … , =}
▪ Binary equality predicate    = 
▪ Arbitrary constant symbols

▪ 𝒜𝐸 : 
1. ∀𝑥. 𝑥 = 𝑥 (reflexivity)

2. ∀𝑥. ∀𝑦. 𝑥 = 𝑦 → 𝑦 = 𝑥 (symmetry)

3. ∀𝑥. ∀𝑦. ∀𝑧. 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 → 𝑥 = 𝑧 (transitivity)

Theory of Equality 𝓣𝐄



Uninterpreted Functions
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▪ An uninterpreted function has no other property than its name, its 
arity and the function congruence property
▪ Given the same inputs, it gives the same outputs

▪ Used for abstractions

▪ 𝑎 ⋅ 𝑓 𝑏 + 𝑓 𝑐 = 𝑑 ∧ 𝑏 ⋅ 𝑓 𝑎 + 𝑓 𝑐 ≠ d ∧ 𝑎 = 𝑏

▪ Using uninterpreted functions we get:

▪ 𝑚 𝑎, 𝑝 𝑓 𝑏 , 𝑓 𝑐 = 𝑑 ∧ 𝑚 𝑏, 𝑝 𝑓 𝑎 , 𝑓 𝑐 ≠ 𝑑 ∧ 𝑎 = 𝑏

▪ Can be used to show UNSAT of the formula
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Example: 𝜑 ≔ ( 𝑓 𝑥 = 𝑔 𝑏 ∧ 𝑓 𝑦 ≠ 𝑓 𝑥 ) → 𝑃(𝑥)

Definition of 𝓣𝑬𝑼𝑭:

▪ ΣEUF = {𝑎0, 𝑏0, 𝑐0, … , =}
▪ Binary equality predicate    = 
▪ Arbitrary constant, function and predicate symbols

▪ 𝒜𝐸𝑈𝐹

1-3    same as in 𝒜𝐸 (reflexivity), (symmetry), (transitivity)
4 ∀𝑥. ∀ 𝑦. 𝑖ٿ) 𝑥𝑖 = 𝑦𝑖) → 𝑓 𝑥 = 𝑓 𝑦 (function congruence)
5          ∀𝑥. ∀ 𝑦. 𝑖ٿ) 𝑥𝑖 = 𝑦𝑖) → 𝑃 𝑥 = 𝑃 𝑦 (predicate equivalence)

Theory of Equality & Uninterpreted Functions 𝓣𝐄𝐔𝐅



𝒯-terms, 𝒯-atoms and 𝒯-literals
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▪ 𝜑 = 𝑥 ≥ 0 ∧ ¬ 𝑥 + 𝑦 ≤ 2 ∨ 𝑥 + 𝑦 ≥ 6 ∧ 𝑥 + 𝑦 ≥ 1 ∨ 𝑥 − 𝑦 ≥ 4

▪ 𝓣-term: 
▪ Constants in Σ, variables, function instances with function symbols and inputs in Σ
▪ 0, x, 𝑥 + 𝑦, 𝑥 − 𝑦

▪ 𝓣-atom:
▪ Predicate instances with predicate symbol and inputs in Σ
▪ 𝑥 ≥ 0, 𝑥 + 𝑦 ≤ 2,…. 

▪ 𝓣-literal:
▪ 𝒯-atom or its negation
▪ 𝑥 + 𝑦 ≤ 2, ¬ 𝑥 + 𝑦 ≤ 2 ,…



Models within a Theory
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▪ Model in Predicate Logic
▪ Defines domain 
▪ Value of free variables
▪ Concrete implementation of functions and predicates

▪ Model in Predicate Logic using Theories
▪ Value of free variables

All possible Models

Models satisfying 
all axioms



𝒯-Satisfiability, 𝒯-validity, 𝒯-Equivalence,
𝒯-Entailment
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All possible Models

Models satisfying 
all axioms

▪ Only models satisfying axioms are relevant
▪ ➔ “Satisfiability modulo (=‘with respect to’) theories”



𝒯-Satisfiability

• Green: Models Satisfying all Axioms

• Violet: Models Satisfying Formula in Question

𝓣-Satisfiable

𝓣-Satisfiable

Not 𝓣-Satisfiable
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𝓣-Valid

𝓣-Valid

Not 𝓣-Valid
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𝒯-Validity

• Green: Models Satisfying all Axioms

• Violet: Models Satisfying Formula in Question



𝒯-Entailment and 𝒯-Equivalence

▪ Similar to Satisfiability & Validity

▪ Only consider models that satisfy all axioms
▪ Models not satisfying (at least) one axiom: 

Irrelevant Model!

15



Outline
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▪ Definition and Notations
▪ What is a theory?
▪ …

▪ Implementation of SMT Solvers
▪ Eager Encoding

explicit encoding of axioms

vs

▪ Lazy Encoding
use specialized theory solvers 
in combination with SAT solvers 



Implementations of SMT Solvers
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▪ Eager Encoding
▪ Equisatisfiable propositional formula
▪ Adds all constraints that could be needed at once

▪ SAT Solver

▪ Lazy Encoding
▪ SAT Solver and Theory Solver
▪ Add constrains only when needed



quant.-free 𝓣𝑬𝑼-formula

equisatisfiable
quant.-free 𝓣𝑬-formula

equisatisfiable
propositional formula

Ackermann’s 
Reduction

Graph-based 
Reduction

Theory
Formula
𝝓𝑻

𝒜 ∧𝝓

equisatisfiable

Eager Encoding for Formulas in 𝓣𝑬𝑼𝑭
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Eliminate 
Function 
Applications

Eliminate 
Equality 
Applications



Ackermann’s Reduction
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Input: Formula 𝝓𝐄𝐔𝐅 in 𝓣𝑬𝑼𝑭 Output: Formula 𝝓𝑬 in 𝓣𝑬

▪ Replace each function instance via a fresh variable
▪ 𝑓 𝑥 ⇝ 𝑓𝑥
▪ Form formula 𝝓𝐄𝐔𝐅

▪ Add functional-consistency constraints
▪ 𝑥 = 𝑦 → 𝑓𝑥 = 𝑓𝑦
▪ Form formula 𝜙𝐹𝐶

▪ 𝜙𝐸 = 𝜙𝐹𝐶 ∧ 𝜙𝐸𝑈𝐹
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Example of Ackermann’s Reduction

▪ 𝝓𝑬𝑼𝑭 ≔ 𝒇 𝒂 = 𝒇 𝒃 ∧ ¬ 𝒇 𝒃 = 𝒇 𝒄

1. 𝜙𝐸𝑈𝐹 ≔ 𝑓𝑎 = 𝑓𝑏 ∧ ¬(𝑓𝑏 = 𝑓𝑐)

2. 𝑓: 𝑎, 𝑏, 𝑐

𝜙𝐹𝐶 ≔ 𝑎 = 𝑏 → 𝑓𝑎 = 𝑓𝑏 ∧ 𝑏 = 𝑐 → 𝑓𝑏 = 𝑓𝑐 ∧

( 𝑎 = 𝑐 → 𝑓𝑎 = 𝑓𝑐)

3. 𝜙𝐸 = 𝜙𝐹𝐶 ∧ 𝜙𝐸𝑈𝐹
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Example of Ackermann’s Reduction
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Example of Ackermann’s Reduction



quant.-free 𝓣𝑬𝑼𝑭-formula

equisatisfiable
quant.-free 𝓣𝑬-formula

equisatisfiable
propositional formula

Ackermann’s 
Reduction

Graph-based 
Reduction
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Eager Encoding for Formulas in 𝓣𝑬𝑼𝑭



▪ Non-Polar Equality Graph

▪ Node per variable

▪ Edge per (dis)equality

▪ Make it chordal

▪ No cycles size > 3

a

b

c

d
e

f

g
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Graph-Based Reduction



▪ Fresh Propositional Variables
▪ 𝑎 = 𝑏 ⇝ 𝑒𝑎=𝑏
▪ Order! (To ensure symmetry) 
𝑏 = 𝑎 ⇝ 𝑒𝑎=𝑏

▪ Triangle (𝑖, 𝑗, 𝑘):
▪ Transitivity Constraints

𝑒𝑖=𝑗 ∧ 𝑒𝑗=𝑘 → 𝑒𝑖=𝑘 ∧

𝑒𝑖=𝑗 ∧ 𝑒𝑖=𝑘 → 𝑒𝑗=𝑘 ∧

𝑒𝑖=𝑘 ∧ 𝑒𝑗=𝑘 → 𝑒𝑖=𝑗

• 𝜙𝑝𝑟𝑜𝑝 = 𝜙𝑇𝐶 ∧ 𝜙𝐸

𝒊 𝒋

𝒌
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Graph-Based Reduction



▪ Fresh Propositional Variables
▪ 𝑎 = 𝑏 ⇝ 𝑒𝑎=𝑏
▪ Order! (To ensure symmetry) 
𝑏 = 𝑎 ⇝ 𝑒𝑎=𝑏

▪ Triangle (𝑖, 𝑗, 𝑘):
▪ Transitivity Constraints

𝑒𝑖=𝑗 ∧ 𝑒𝑗=𝑘 → 𝑒𝑖=𝑘 ∧

𝑒𝑖=𝑗 ∧ 𝑒𝑖=𝑘 → 𝑒𝑗=𝑘 ∧

𝑒𝑖=𝑘 ∧ 𝑒𝑗=𝑘 → 𝑒𝑖=𝑗

• 𝜙𝑝𝑟𝑜𝑝 = 𝜙𝑇𝐶 ∧ 𝜙𝐸

𝒊 𝒋

𝒌

➔ SAT Solver
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Graph-Based Reduction
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Example Graph-Based Reduction
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Example Graph-Based Reduction



Example Graph-Based Reduction
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quant.-free 𝓣𝑼𝑬-formula

equisatisfiable
quant.-free 𝓣𝑬-formula

equisatisfiable
propositional formula

Ackermann’s 
Reduction

Graph-based 
Reduction
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Eager Encoding for Formulas in 𝓣𝑬𝑼𝑭

➔ SAT Solver



Outline
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▪ Definition and Notations
▪ What is a theory?
▪ …

▪ Implementation of SMT Solvers
▪ Eager Encoding

vs

▪ Lazy Encoding



(Very) Lazy Encoding

SAT 
Solver

Theory 
Solver

Assignment of Theory 
Literals

Blocking Clause

𝝓

SATUNSAT

32

𝜙 ≔ ( 𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐



(Very) Lazy Encoding

SAT 
Solver

Theory 
Solver

Assignment of Theory 
Literals

Blocking Clause

𝝓

SATUNSAT
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𝜙 ≔ ( 𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐

𝑎 = 𝑏 ∧ 𝑎 = 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ 𝑑 = 𝑒



(Very) Lazy Encoding

SAT 
Solver

Theory 
Solver
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𝝓

SATUNSAT
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𝑎 = 𝑏 ∧ 𝑎 = 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ 𝑑 = 𝑒

𝑎 ≠ 𝑏 ∨ 𝑎 ≠ 𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑑 ≠ 𝑒

𝜙 ≔ ( 𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐



(Very) Lazy Encoding
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𝜙 ≔ ( 𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐

𝑎 = 𝑏 ∧ 𝑎 = 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ 𝑑 ≠ 𝑒



(Very) Lazy Encoding
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Solver
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𝝓

SATUNSAT
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𝑎 = 𝑏 ∧ 𝑎 = 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ 𝑑 ≠ 𝑒

𝑎 ≠ 𝑏 ∨ 𝑎 ≠ 𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑑 = 𝑒

𝜙 ≔ ( 𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐



(Very) Lazy Encoding

SAT 
Solver

Theory 
Solver
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𝝓

SATUNSAT
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𝑎 = 𝑏 ∧ 𝑎 = 𝑐 ∧ 𝑏 = 𝑐 ∧ 𝑑 ≠ 𝑒

𝜙 ≔ ( 𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐



(Very) Lazy Encoding

SAT 
Solver

Theory 
Solver

Assignment of Theory 
Literals

Blocking Clause

𝝓

SATUNSAT
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𝑎 = 𝑏 ∧ 𝑎 = 𝑐 ∧ 𝑏 = 𝑐 ∧ 𝑑 ≠ 𝑒

𝜙 ≔ ( 𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐

𝜙 𝑖𝑠 𝒯−Satisfiability



Conjunctive Fragment of 𝒯𝑈𝐸

▪ Theory solver takes conjunctions of theory literals as input
▪ Equalities (𝑡1= 𝑡2)

▪ Disequalities (𝑡1≠ 𝑡2)

▪ Terms 𝑡𝑖
▪ Constants
▪ 𝑎, 𝑏, 𝑐, 𝑑, …

▪ Uninterpreted Function instance
▪ 𝑓 𝑎 , 𝑔 𝑏 , ℎ 𝑐, 𝑑 , …
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Congruence-Closure Algorithm

1. For every equality, create a congruence class 
▪ E.g. 𝑡1 = 𝑡2: create class for 𝑡1, 𝑡2

2. Create a singleton class for every term that only appears in disequalites

3. Merge clases:
▪ Shared term between classes:   Merge classes! (repeat)

▪ 𝑡𝑖 , 𝑡𝑗 from same class:  Merge classes of 𝑓 𝑡𝑖 , 𝑓 𝑡𝑗 (repeat)
▪ No merging possible anymore, go to step 4

4. Check Disequalities 𝑡𝑘 ≠ 𝑡𝑙
▪ 𝑡𝑘 , 𝑡𝑙 in same class: UNSAT!
▪ Otherwise: SAT!

40
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Example for CC-Algorithm

▪ 𝑥1 = 𝑥2 ∧ 𝑥2 = 𝑥3 ∧ 𝑥4 = 𝑥5 ∧ 𝑥5 ≠ 𝑥1 ∧ 𝑓 𝑥1 ≠ 𝑓 𝑥3



Example for CC-Algorithm
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▪ 𝑥 = 𝑓 𝑦 ∧ 𝑦 = 𝑓 𝑢 ∧ 𝑢 = 𝑣 ∧ 𝑣 = 𝑧 ∧ 𝑣 = 𝑓 𝑦 ∧ 𝑓 𝑥 ≠ 𝑓(𝑧)
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Example for CC-Algorithm



Thank You
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