
Logic and Computability

Theories in
Predicate Logic
and Satisfiability Modulo Theories

Bettina Könighofer
bettina.koenighofer@iaik.tugraz.at

Stefan Pranger
stefan.pranger@iaik.tugraz.at

https://xkcd.com/2323/

2

Motivation

▪ We want write formulas like
▪ 𝜑 = 𝑥 ≥ 0 ∧ 𝑥 + 𝑦 ≤ 2 ∨ 𝑥 + 𝑦 ≥ 6 ∧ 𝑥 + 𝑦 ≥ 1 ∨ 𝑥 − 𝑦 ≥ 4

▪ using
▪ Real Numbers, Integers, Function and Predicates like +,-,<,=,>…

▪ Theory
▪ Axioms that define interpretation/meaning for functions and predicates

▪ Satisfiability Modulo Theory
▪ Solving first-order formulas within a theory
▪ → Checking whether a formula logic is satisfiable modulo theory means that we

only consider models that interpret functions and predicates as defined by the
axioms in the theory.

Outline
3

▪ Definition and Notations
▪ What is a theory?
▪ …

▪ Implementation of SMT Solvers
▪ Eager Encoding

explicit encoding of axioms

vs

▪ Lazy Encoding
use specialized theory solvers
in combination with SAT solvers

4 Notion of “Theory”

Application

Domain

Structures &

Objects

Predicates &

Functions

Arithmetic

Numbers

(Integers,

Rationals, Reals)

Computer

Programs
Arrays,

Lists,…

Bitvectors,
Array-Read,

Array-Write, …

5

Definition of a First-Order Theory 𝓣:

▪ Signature Σ
▪ is a set of constants, predicate and function symbols
▪ besides the logical symbols (logical connectives like ∧,∨ ⋯, variables like 𝑥, 𝑦 …,

and quantifiers like ∀𝑥), a formula only has symbols from Σ
▪ → Do not use any non-logical symbols

(constants, predicates or functions) not contained in Σ

▪ Set of Axioms 𝒜
▪ Sentences (=Formulas without free variables)

with symbols from Σ only
▪ Gives meaning to the predicate and function symbols

Definition of a Theory

6

Example: 𝜑:= 𝑥 ≥ 0 ∧ 𝑥 + 𝑦 ≤ 2 ∨ 𝑥 + 𝑦 ≥ 6

Definition of 𝓣𝐋𝐈𝐀:

▪ ΣLIA ∶= {… ,−3,−2,−1,0,1,2,3… ,=,+,−,≠,<,>,≤,≥}

▪ 𝒜𝐿𝐼𝐴 : defines the usual meaning to all symbols
▪ Maps constants to their corresponding value in
▪ E.g., The function + is interpreted as the addition function, e.g.
▪ …
▪ 0+0 → 0
▪ 0+1→ 1….

Theory of Linear Integer Arithmetic 𝓣𝐋𝐈𝐀

7

Example: 𝜑 ≔ 𝑥 = 𝑏 ∧ 𝑦 ≠ 𝑥 → (𝑤 = 𝑏)
Definition of 𝓣𝐄:

▪ ΣE ∶= {𝑎0, 𝑏0, 𝑐0, … , =}
▪ Binary equality predicate =
▪ Arbitrary constant symbols

▪ 𝒜𝐸 :
1. ∀𝑥. 𝑥 = 𝑥 (reflexivity)

2. ∀𝑥. ∀𝑦. 𝑥 = 𝑦 → 𝑦 = 𝑥 (symmetry)

3. ∀𝑥. ∀𝑦. ∀𝑧. 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 → 𝑥 = 𝑧 (transitivity)

Theory of Equality 𝓣𝐄

Uninterpreted Functions
8

▪ An uninterpreted function has no other property than its name, its
arity and the function congruence property
▪ Given the same inputs, it gives the same outputs

▪ Used for abstractions

▪ 𝑎 ⋅ 𝑓 𝑏 + 𝑓 𝑐 = 𝑑 ∧ 𝑏 ⋅ 𝑓 𝑎 + 𝑓 𝑐 ≠ d ∧ 𝑎 = 𝑏

▪ Using uninterpreted functions we get:

▪ 𝑚 𝑎, 𝑝 𝑓 𝑏 , 𝑓 𝑐 = 𝑑 ∧ 𝑚 𝑏, 𝑝 𝑓 𝑎 , 𝑓 𝑐 ≠ 𝑑 ∧ 𝑎 = 𝑏

▪ Can be used to show UNSAT of the formula

9

Example: 𝜑 ≔ (𝑓 𝑥 = 𝑔 𝑏 ∧ 𝑓 𝑦 ≠ 𝑓 𝑥) → 𝑃(𝑥)

Definition of 𝓣𝑬𝑼𝑭:

▪ ΣEUF = {𝑎0, 𝑏0, 𝑐0, … , =}
▪ Binary equality predicate =
▪ Arbitrary constant, function and predicate symbols

▪ 𝒜𝐸𝑈𝐹

1-3 same as in 𝒜𝐸 (reflexivity), (symmetry), (transitivity)
4 ∀𝑥. ∀ 𝑦. 𝑖ٿ) 𝑥𝑖 = 𝑦𝑖) → 𝑓 𝑥 = 𝑓 𝑦 (function congruence)
5 ∀𝑥. ∀ 𝑦. 𝑖ٿ) 𝑥𝑖 = 𝑦𝑖) → 𝑃 𝑥 = 𝑃 𝑦 (predicate equivalence)

Theory of Equality & Uninterpreted Functions 𝓣𝐄𝐔𝐅

𝒯-terms, 𝒯-atoms and 𝒯-literals
10

▪ 𝜑 = 𝑥 ≥ 0 ∧ ¬ 𝑥 + 𝑦 ≤ 2 ∨ 𝑥 + 𝑦 ≥ 6 ∧ 𝑥 + 𝑦 ≥ 1 ∨ 𝑥 − 𝑦 ≥ 4

▪ 𝓣-term:
▪ Constants in Σ, variables, function instances with function symbols and inputs in Σ
▪ 0, x, 𝑥 + 𝑦, 𝑥 − 𝑦

▪ 𝓣-atom:
▪ Predicate instances with predicate symbol and inputs in Σ
▪ 𝑥 ≥ 0, 𝑥 + 𝑦 ≤ 2,….

▪ 𝓣-literal:
▪ 𝒯-atom or its negation
▪ 𝑥 + 𝑦 ≤ 2, ¬ 𝑥 + 𝑦 ≤ 2 ,…

Models within a Theory
11

▪ Model in Predicate Logic
▪ Defines domain
▪ Value of free variables
▪ Concrete implementation of functions and predicates

▪ Model in Predicate Logic using Theories
▪ Value of free variables

All possible Models

Models satisfying
all axioms

𝒯-Satisfiability, 𝒯-validity, 𝒯-Equivalence,
𝒯-Entailment

12

All possible Models

Models satisfying
all axioms

▪ Only models satisfying axioms are relevant
▪ ➔ “Satisfiability modulo (=‘with respect to’) theories”

𝒯-Satisfiability

• Green: Models Satisfying all Axioms

• Violet: Models Satisfying Formula in Question

𝓣-Satisfiable

𝓣-Satisfiable

Not 𝓣-Satisfiable

13

𝓣-Valid

𝓣-Valid

Not 𝓣-Valid

14

𝒯-Validity

• Green: Models Satisfying all Axioms

• Violet: Models Satisfying Formula in Question

𝒯-Entailment and 𝒯-Equivalence

▪ Similar to Satisfiability & Validity

▪ Only consider models that satisfy all axioms
▪ Models not satisfying (at least) one axiom:

Irrelevant Model!

15

Outline
16

▪ Definition and Notations
▪ What is a theory?
▪ …

▪ Implementation of SMT Solvers
▪ Eager Encoding

explicit encoding of axioms

vs

▪ Lazy Encoding
use specialized theory solvers
in combination with SAT solvers

Implementations of SMT Solvers
17

▪ Eager Encoding
▪ Equisatisfiable propositional formula
▪ Adds all constraints that could be needed at once

▪ SAT Solver

▪ Lazy Encoding
▪ SAT Solver and Theory Solver
▪ Add constrains only when needed

quant.-free 𝓣𝑬𝑼-formula

equisatisfiable
quant.-free 𝓣𝑬-formula

equisatisfiable
propositional formula

Ackermann’s
Reduction

Graph-based
Reduction

Theory
Formula
𝝓𝑻

𝒜 ∧𝝓

equisatisfiable

Eager Encoding for Formulas in 𝓣𝑬𝑼𝑭
18

Eliminate
Function
Applications

Eliminate
Equality
Applications

Ackermann’s Reduction
19

Input: Formula 𝝓𝐄𝐔𝐅 in 𝓣𝑬𝑼𝑭 Output: Formula 𝝓𝑬 in 𝓣𝑬

▪ Replace each function instance via a fresh variable
▪ 𝑓 𝑥 ⇝ 𝑓𝑥
▪ Form formula ෡𝝓𝐄𝐔𝐅

▪ Add functional-consistency constraints
▪ 𝑥 = 𝑦 → 𝑓𝑥 = 𝑓𝑦
▪ Form formula 𝜙𝐹𝐶

▪ 𝜙𝐸 = 𝜙𝐹𝐶 ∧ ෠𝜙𝐸𝑈𝐹

20

Example of Ackermann’s Reduction

▪ 𝝓𝑬𝑼𝑭 ≔ 𝒇 𝒂 = 𝒇 𝒃 ∧ ¬ 𝒇 𝒃 = 𝒇 𝒄

1. ෠𝜙𝐸𝑈𝐹 ≔ 𝑓𝑎 = 𝑓𝑏 ∧ ¬(𝑓𝑏 = 𝑓𝑐)

2. 𝑓: 𝑎, 𝑏, 𝑐

𝜙𝐹𝐶 ≔ 𝑎 = 𝑏 → 𝑓𝑎 = 𝑓𝑏 ∧ 𝑏 = 𝑐 → 𝑓𝑏 = 𝑓𝑐 ∧

(𝑎 = 𝑐 → 𝑓𝑎 = 𝑓𝑐)

3. 𝜙𝐸 = 𝜙𝐹𝐶 ∧ ෠𝜙𝐸𝑈𝐹

21

Example of Ackermann’s Reduction

22

Example of Ackermann’s Reduction

quant.-free 𝓣𝑬𝑼𝑭-formula

equisatisfiable
quant.-free 𝓣𝑬-formula

equisatisfiable
propositional formula

Ackermann’s
Reduction

Graph-based
Reduction

23

Eager Encoding for Formulas in 𝓣𝑬𝑼𝑭

▪ Non-Polar Equality Graph

▪ Node per variable

▪ Edge per (dis)equality

▪ Make it chordal

▪ No cycles size > 3

a

b

c

d
e

f

g

24

Graph-Based Reduction

▪ Fresh Propositional Variables
▪ 𝑎 = 𝑏 ⇝ 𝑒𝑎=𝑏
▪ Order! (To ensure symmetry)
𝑏 = 𝑎 ⇝ 𝑒𝑎=𝑏

▪ Triangle (𝑖, 𝑗, 𝑘):
▪ Transitivity Constraints

𝑒𝑖=𝑗 ∧ 𝑒𝑗=𝑘 → 𝑒𝑖=𝑘 ∧

𝑒𝑖=𝑗 ∧ 𝑒𝑖=𝑘 → 𝑒𝑗=𝑘 ∧

𝑒𝑖=𝑘 ∧ 𝑒𝑗=𝑘 → 𝑒𝑖=𝑗

• 𝜙𝑝𝑟𝑜𝑝 = 𝜙𝑇𝐶 ∧ ෠𝜙𝐸

𝒊 𝒋

𝒌

25

Graph-Based Reduction

▪ Fresh Propositional Variables
▪ 𝑎 = 𝑏 ⇝ 𝑒𝑎=𝑏
▪ Order! (To ensure symmetry)
𝑏 = 𝑎 ⇝ 𝑒𝑎=𝑏

▪ Triangle (𝑖, 𝑗, 𝑘):
▪ Transitivity Constraints

𝑒𝑖=𝑗 ∧ 𝑒𝑗=𝑘 → 𝑒𝑖=𝑘 ∧

𝑒𝑖=𝑗 ∧ 𝑒𝑖=𝑘 → 𝑒𝑗=𝑘 ∧

𝑒𝑖=𝑘 ∧ 𝑒𝑗=𝑘 → 𝑒𝑖=𝑗

• 𝜙𝑝𝑟𝑜𝑝 = 𝜙𝑇𝐶 ∧ ෠𝜙𝐸

𝒊 𝒋

𝒌

➔ SAT Solver

26

Graph-Based Reduction

27

Example Graph-Based Reduction

28

Example Graph-Based Reduction

Example Graph-Based Reduction
29

quant.-free 𝓣𝑼𝑬-formula

equisatisfiable
quant.-free 𝓣𝑬-formula

equisatisfiable
propositional formula

Ackermann’s
Reduction

Graph-based
Reduction

30

Eager Encoding for Formulas in 𝓣𝑬𝑼𝑭

➔ SAT Solver

Outline
31

▪ Definition and Notations
▪ What is a theory?
▪ …

▪ Implementation of SMT Solvers
▪ Eager Encoding

vs

▪ Lazy Encoding

(Very) Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of Theory
Literals

Blocking Clause

𝝓

SATUNSAT

32

𝜙 ≔ (𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐

(Very) Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of Theory
Literals

Blocking Clause

𝝓

SATUNSAT

33

𝜙 ≔ (𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐

𝑎 = 𝑏 ∧ 𝑎 = 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ 𝑑 = 𝑒

(Very) Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of Theory
Literals

Blocking Clause

𝝓

SATUNSAT

34

𝑎 = 𝑏 ∧ 𝑎 = 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ 𝑑 = 𝑒

𝑎 ≠ 𝑏 ∨ 𝑎 ≠ 𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑑 ≠ 𝑒

𝜙 ≔ (𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐

(Very) Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of Theory
Literals

Blocking Clause

𝝓

SATUNSAT

35

𝜙 ≔ (𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐

𝑎 = 𝑏 ∧ 𝑎 = 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ 𝑑 ≠ 𝑒

(Very) Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of Theory
Literals

Blocking Clause

𝝓

SATUNSAT

36

𝑎 = 𝑏 ∧ 𝑎 = 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ 𝑑 ≠ 𝑒

𝑎 ≠ 𝑏 ∨ 𝑎 ≠ 𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑑 = 𝑒

𝜙 ≔ (𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐

(Very) Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of Theory
Literals

Blocking Clause

𝝓

SATUNSAT

37

𝑎 = 𝑏 ∧ 𝑎 = 𝑐 ∧ 𝑏 = 𝑐 ∧ 𝑑 ≠ 𝑒

𝜙 ≔ (𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐

(Very) Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of Theory
Literals

Blocking Clause

𝝓

SATUNSAT

38

𝑎 = 𝑏 ∧ 𝑎 = 𝑐 ∧ 𝑏 = 𝑐 ∧ 𝑑 ≠ 𝑒

𝜙 ≔ (𝑑 = 𝑒 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑐
∨ 𝑏 ≠ 𝑐

𝜙 𝑖𝑠 𝒯−Satisfiability

Conjunctive Fragment of 𝒯𝑈𝐸

▪ Theory solver takes conjunctions of theory literals as input
▪ Equalities (𝑡1= 𝑡2)

▪ Disequalities (𝑡1≠ 𝑡2)

▪ Terms 𝑡𝑖
▪ Constants
▪ 𝑎, 𝑏, 𝑐, 𝑑, …

▪ Uninterpreted Function instance
▪ 𝑓 𝑎 , 𝑔 𝑏 , ℎ 𝑐, 𝑑 , …

39

Congruence-Closure Algorithm

1. For every equality, create a congruence class
▪ E.g. 𝑡1 = 𝑡2: create class for 𝑡1, 𝑡2

2. Create a singleton class for every term that only appears in disequalites

3. Merge clases:
▪ Shared term between classes: Merge classes! (repeat)

▪ 𝑡𝑖 , 𝑡𝑗 from same class: Merge classes of 𝑓 𝑡𝑖 , 𝑓 𝑡𝑗 (repeat)
▪ No merging possible anymore, go to step 4

4. Check Disequalities 𝑡𝑘 ≠ 𝑡𝑙
▪ 𝑡𝑘 , 𝑡𝑙 in same class: UNSAT!
▪ Otherwise: SAT!

40

41

Example for CC-Algorithm

▪ 𝑥1 = 𝑥2 ∧ 𝑥2 = 𝑥3 ∧ 𝑥4 = 𝑥5 ∧ 𝑥5 ≠ 𝑥1 ∧ 𝑓 𝑥1 ≠ 𝑓 𝑥3

Example for CC-Algorithm
42

▪ 𝑥 = 𝑓 𝑦 ∧ 𝑦 = 𝑓 𝑢 ∧ 𝑢 = 𝑣 ∧ 𝑣 = 𝑧 ∧ 𝑣 = 𝑓 𝑦 ∧ 𝑓 𝑥 ≠ 𝑓(𝑧)

43

Example for CC-Algorithm

Thank You

44

44

https://xkcd.com/1033/

