Logic and Computability

Theories in

Predicate Logic
and Satisfiability Modulo Theories

Bettina Kénighofer

bettina.koenighofer@iaik.tugraz.at

Stefan Pranger

stefan.pranger@iaik.tugraz.at

https://xkcd.com/2323/

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

“I SPEND A LOT OF TiIME ON THIS TASK.
T SHOULD LIRITE A PROGRAM AUTOMATING IT!™

THECRY:

WRITING~,

CODE FREE
-

woRk o’ N\ WAt T

ORIGINAL TRSK

TME
REAUTY:
DEBUGGING <G DEVELFNENT
WRITING A~ G

CODE. I
RETHINKNG __ _ _ NO TME FOR
WORK — ORIGINAL TASK

ANYVIORE

TME.

Motivation

= We want write formulas like

" p=x=20AN(x+y<2Vx+y=26)A(x+y=>1Vx—y=4)
= using

= Real Numbers, Integers, Function and Predicates like +,-,<,=,>...

= Theory
= Axioms that define interpretation/meaning for functions and predicates

= Satisfiability Modulo Theory
= Solving first-order formulas within a theory
= - Checking whether a formula logic is satisfiable modulo theory means that we
only consider models that interpret functions and predicates as defined by the
axioms in the theory.

Outline

= Definition and Notations
= What is a theory?

" Implementation of SMT Solvers
= Eager Encoding

explicit encoding of axioms

VS

" Lazy Encoding

use specialized theory solvers
in combination with SAT solvers

BB Notion of “Theory”

Application Structures & Predicates &

Domain Objects Functions

| | Numbers e > < >
Arithmetic (Integers, +
Rationals, Reals)
Computer . Array-Read,
Programs Arrays, Bitvectors, Array-Write, ...

Lists,...

Bl Definition of a Theory

Definition of a First-Order Theory T':

= Signature X
" js a set of constants, predicate and function symbols
= besides the logical symbols (logical connectives like AV ---, variables like x,y ..,
and quantifiers like ¥x), a formula only has symbols from X
= - Do not use any non-logical symbols
(constants, predicates or functions) not contained in X

= Set of Axioms A
= Sentences (=Formulas without free variables)
with symbols from X only
= Gives meaning to the predicate and function symbols

KN Theory of Linear Integer Arithmetic 5

Example:p:=x> OA (x+y< 2V x+y = 6)

DEfinitiOn Of TLIA:
- ZLIA .= {) _3J _2, _1)011)2)3 ey —, +) T #:; <; >; S; 2}

" A;;4 : defines the usual meaning to all symbols
= Maps constants to their corresponding value in Z
= E.g., The function + is interpreted as the addition function, e.g.
"= 0+0—2>0
= 0+1 2 1....

Theory of Equality T'g

Example: ¢ == (x =b)A(y #x) - (W = D))
Definition of T:

u ZE = {ao, bo, C(), . =}
» Binary equality predicate =
* Arbitrary constant symbols

" qu .
1. Vx.x =x (reflexivity)
2. Vx.Vy.(x =y >y =x) (symmetry)

3. Vx.Vy.Vz.(x=yAy=2z—->x=2) (transitivity)

= Uninterpreted Functions

= An uninterpreted function has no other property than its name, its
arity and the function congruence property
= Given the same inputs, it gives the same outputs

= Used for abstractions

a- (f)+ f(©)=d Ab- (f(a)+ f(c)) #d Aa = b

= Using uninterpreted functions we get:

o m(a,p(f(b),f(c))) = d/\m(b,p(f(a),f(c))) +dANa=D»

= Can be used to show UNSAT of the formula

R Theory of Equality & Uninterpreted Functions T ryr
Example: ¢ == ((f(x) = g(b)) A (f () # f(x))) - P(x)

Definition of T py;:
= Xgur = {40, bo, Cos s =}
* Binary equality predicate =
» Arbitrary constant, function and predicate symbols

" Agyr
1-3 same asin Agr (reflexivity), (symmetry), (transitivity)
4 Vx.Vy.((Njx; =y;) = f(x) = f(¥)) (function congruence)
5 Vx.Vy.((A;x; = y;) = P(x) = P(y)) (predicate equivalence)

= T -terms, J'-atoms and T -literals
mp=x2=0A ®\ x+y=26)ANx+y=1Vx—y=4)

= J-term:
= Constants in X, variables, function instances with function symbols and inputs in X
" 0,x,x+y,x—Yy
= J-atom:
= Predicate instances with predicate symbol and inputs in X
"x=>0,x+y< 2,..
= J-literal:
= J-atom or its negation
" x+y< 2,-(x+y< 2),..

= Models within a Theory

"= Model in Predicate Logic
= Defines domain
= Value of free variables
= Concrete implementation of functions and predicates

= Model in Predicate Logic using Theories
= Value of free variables

All possible Models

Models satisfying

all axioms

Bl 7 -Satisfiability, 7-validity, 7-Equivalence,
T -Entailment

" Only models satisfying axioms are relevant
= = “Satisfiability modulo (=‘with respect to’) theories”

All possible Models

Models satisfying
all axioms

= J -Satisfiability

* Green: Models Satisfying all Axioms
* Violet: Models Satisfying Formula in Question

T -Satisfiable

T -Satisfiable

Not 7 -Satisfiable

= I -Validity

* Green: Models Satisfying all Axioms
* Violet: Models Satisfying Formula in Question

J-Valid

J-Valid

Not 7'-Valid

= J-Entailment and T -Equivalence

= Similar to Satisfiability & Validity

" Only consider models that satisfy all axioms
= Models not satisfying (at least) one axiom:
Irrelevant Model!

Outline

o %

" Implementation of SMT Solvers
= Eager Encoding

explicit encoding of axioms

VS

" Lazy Encoding

use specialized theory solvers
in combination with SAT solvers

Implementations of SMT Solvers

= Eager Encoding
= Equisatisfiable propositional formula
= Adds all constraints that could be needed at once
= SAT Solver

. Lazy EnCOding Assign _EI'ItOf
= SAT Solver and Theory Solver & SAT mummmmnd Theory
. Solver - Solver
= Add constrains only when needed

UNSAT SAT

= Eager Encoding for Formulas in T gyr

quant.-free T y-formula

Eliminate Ackermann’s
Function Reduction
Applications

equisatisfiable
quant.-free T g-formula

Eliminate Graph-based
Equality Reduction
Applications

equisatisfiable
propositional formula

Theory
Formula

¢T

equisatisfiable

= Ackermann’s Reduction

Input: Formula ¢gyrp in T'gyr Output: Formula ¢pg in T'g

" Replace each function instance via a fresh variable

" Form formula ¢gyr

= Add functional-consistency constraints

*(x=y) - (K =5)

" Form formula ¢,

" g = Prc A Prur

= Example of Ackermann’s Reduction

" Qpyr = (f(a) = f(b)) A —'(f(b) = f(C))
1. ¢gyr = fa = fo) A=(fp = f2)

2. f:a,b,c
brc=(@=b) = fu=fp) A((b=0) = fp =) A
((a=c) - fo = fc)

3. ¢g = Ppc A Pryr

= Example of Ackermann’s Reduction

[Lecture] Given the formula

vevr = flg(@)=fy) V (z=9Hy) Nz # f(2))

Apply the Ackermann reduction algorithm to compute an equisatisfiable formula in 7.

prc = (T=Y = go = gy) A
(g =Y = fgu = fy)N
(ga?:Z_>fg:t:fz)/\
(y:Z%fy:fz)
@EUF — fga::fy V (Z:gy/\z#fz)

YE = QEUF N\QFC

=l Example of Ackermann’s Reduction

[Lecture| Perform the graph-based reduction on the following formula to compute an equsat-
isfiable formula in propositional logic.

Given the formula

vevr = flz,y) = f(y,2) V (2= fy,2) A f(z,2) # f(z,9))

Apply the Ackermann reduction algorithm to compute an equisatisfiable formula in 7g.

prc = (@ =YAY=2—= foy = fy)A
(r=2ANy=2—= foy = fou)

PEUF = f:r:y:fyz V (Z:fyz/\f:c:c#f:cy)

YE = QEUF N\ YFC

Eager Encoding for Formulas in T gyr

quant.-free T gy p-formula

Ackermann’s
Reduction

v

equisatisfiable
quant.-free T g-formula

Graph-based
Reduction

equisatisfiable
propositional formula

= Graph-Based Reduction

= Non-Polar Equality Graph
= Node per variable

= Edge per (dis)equality

= Make it chordal

= No cycles size >3

= Graph-Based Reduction

" Fresh Propositional Variables
"a=b we,_y

" Order! (To ensure symmetry)
b=a we,_}

" Triangle (i,J, k):
" Transitivity Constraints
(ei=j Aejmi = ei—x) A
(ei=j Aeimi = ej=x) A
(ei:k A ej:k - ei:j)

= Graph-Based Reduction

" Fresh Propositional Variables
"a=b e,y

= Order! (To ensure symmetry)
b=a we,_}

" Triangle (i,J, k):
" Transitivity Constraints
(ei=j Aejmi = ei—x) A
(ei=j Aeimi = ej=x) A
(el':k N ej=k - el-=j)

° ¢prop = ¢rc N Qg

=» SAT Solver

Example Graph-Based Reduction

X b =g =bAb=cAc=dAd #a

@ -

[> —/’/ia’l_‘]& ¢Tc"= {eabﬁcchC.c)"(e&L”ch——‘Cbc)A
gd,/ol;cd (Cbc"ca:."’e“b)A)

| L A se,y) n (gt tad™ Coc

& O, sl

I\(C‘d A Cye ">e¢J)

A 2

=l Example Graph-Based Reduction

» pr:=a=bAb#tc-o(c¥dvd=eAe=f)

e a €

@_/@———@ ¢f"}' = Cop ¥ Cpe > (- €d " Sde ef >
@/@fc}b

= Example Graph-Based Reduction

|Lecture| Perform graph-based reduction to translate a formula in 7% into an equisatisfiable
formula in propositional logic.

op = (a=bVa=d —(b=c A c#eN e#d)

p1C =(€azb N €h=c —* €a=c)/\

(€amp N €ame —> Ep—c) A

(ebzc N €qg—e — ea:b);’\

e Triangle 1: a-b-c (Cara A o — Caa)
a=C C— =

e Triangle 2: a-c-d (Cae A Camd — Comd) A

(eczd N €eqed — Ea:c)
L;C\E = (ea,:b \V4 Ca—=d — (Eb:c A _'Ec:d)

Pprop = PTC N PE

Eager Encoding for Formulas in T gyr

quant.-free T yg-formula

Ackermann’s
Reduction

v

equisatisfiable

quant.-free T g-formula

Graph-based
Reduction
equisatisfiable
propositional formula

=» SAT Solver

1 Outline

m Definition and Notations
= What is a theory?

" [Implementation of SMT Solvers
= Eager Encoding

4

" Lazy Encoding

(Very) Lazy Encoding

Assignment of Theory

¢ SAT Literals Theo ry
Solver Solver

Blocking Clause
p=((d=eNa=b)-a=c)
Vb +c

UNSAT SAT

(Very) Lazy Encoding

a=bANa=cAb#*cANd=c¢e

Assignment of Theory

¢ SAT Literals Theo ry
Solver Solver

Blocking Clause
p=((d=eNa=b)-a=c)
Vb +c

UNSAT SAT

(Very) Lazy Encoding

a=bANa=cAb#*cANd=c¢e

Assignment of Theory

¢ SAT Literals Theo ry
Solver Solver

Blocking Clause
p=((d=eNa=b)-a=c)
Vb +c

a+xbVvVa#+#cVb=cvd+e

UNSAT SAT

(Very) Lazy Encoding

a=bANa=cAb#*cANd +*e

Assignment of Theory

¢ SAT Literals Theo ry
Solver Solver

Blocking Clause
p=((d=eNa=b)-a=c)
Vb +c

UNSAT SAT

(Very) Lazy Encoding

a=bANa=cAb#*cANd +*e

Assignment of Theory

¢ SAT Literals Theo ry
Solver Solver

Blocking Clause
p=((d=eNa=b)-a=c)
Vb +c

a+xbVvVa#+cVb=cvd=e

UNSAT SAT

3

(Very) Lazy Encoding

a=bANa=cAb=cANd #e

Assignment of Theory

¢ SAT Literals Theo ry
Solver Solver

Blocking Clause
p=((d=eNa=b)-a=c)
Vb +c

UNSAT SAT

(Very) Lazy Encoding

a=bANa=cAb=cANd #e

Assignment of Theory

¢ SAT Literals Theo ry
Solver Solver

Blocking Clause
p=((d=eNa=b)-a=c)
Vb +c

¢ is T-Satisfiability

UNSAT SAT

Conjunctive Fragment of 7

" Theory solver takes conjunctions of theory literals as input
» Equalities (t;=t5)
* Disequalities (t;# t5)

" Terms t;
= Constants
= a,b,cd,..
= Uninterpreted Function instance

= f(a),g(b),h(c,d),..

Congruence-Closure Algorithm

1. For every equality, create a congruence class
" Eg.t; =t,: create class for tq, t,

2. Create a singleton class for every term that only appears in disequalites

3. Merge clases:
= Shared term between classes: Merge classes! (repeat)
t;, tj from same class: Merge classes off(ti),f(tj) (repeat)
= No merging possible anymore, go to step 4

4. Check Disequalities t;, # t;
" {,t; in same class: UNSAT!
= Otherwise: SAT!

- Example for CC-Algorithm

"X{ =Xy ANXy =X3 AXy =X AXs F X1 N f(xq) # f(x3)

(a2 3 Cxg X33 % X5 3 {160 4P035))
N

'<X7,)(2,X37 ‘(YQ’ Xs_} (f-{){?))‘ {f(x})j
'()%/Yz/X}y ‘(Y,’,xfj (ffx‘,)'/(x})}

hece Dise ,&6‘#m : X5+X" il
el P) % 105) § Pos s Tow WAT

- Example for CC-Algorithm

"x=fAy=fWAu=vAv=zAv=f)Afx)#f(2)

(x,f’_{g_)) Ly, Plu) jlau vy (v, 25 v, LY (Fx)F (flel)
<r Pl et <y, 20a)y A 15,25 < Flx)y <F(Z/)i
Ly,v, 2) Ky flls L plx) s LF(2)
xp.2 FWy ALy fludy LEx), FL2]

Cheh i P(x)# {(2) é Co: = WNNST

Example for CC-Algorithm

[Lecture| Consider the following formula in the conjunctive fragment of Ty p.

=fy)he#yANyF#uly= fu)ANz# flu)A
u=vAv=zAv=f(y) ANv# f(z) A f(x) # f(z)

Use the Congruence Closure algorithm to determine whether this formula is satisfiable.

{z, f(y) 14y, f(w)} {w, v} {v, 2} {o, F(W)) {f(2)}, {F(2)}
{z, ()} {y, f(w)}, {w, v, 2,0, f(y), {f(2)}, {F(2)}}

{z, f(y), w,v, 2,0}, {y, F) 1, {f (@) }, { f(2)}

{z, f(¥),8,v,2z,v}, {y, (W)}, { f(z), f(2)}

{z, f(y),u,v,2,v},{y, f(w)}, {f(z), f(2)}

Checking the disequality f(z) # f(z) leads to the result that the assignment is UNSAT
since f(x) and f(z) are in the same congruence class.

Thank You

https://xkcd.com/1033/

