

Logic and Computability Lecture 5

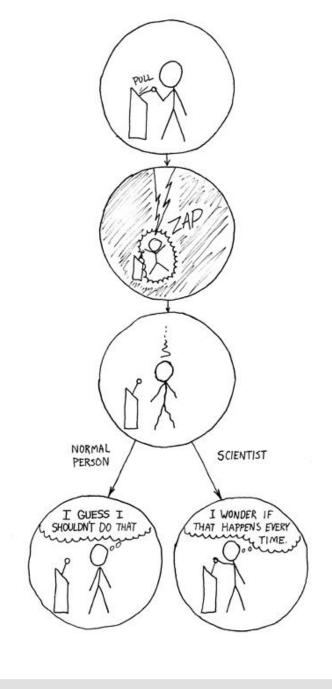
Predicate Logic

Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at

Stefan Pranger

stefan.pranger@iaik.tugraz.at



Outline

- Modelling Sentences
- Syntax
- Semantics, Models
 - Models
 - Satisfiability & Validity

Formulas in Predicate Logic

- Variables over arbitrary domains
- Functions and predicates
- New operators:
 - ∀ ... *forall*
 - ∃ ... *exists*

$$\forall x \exists y . P(x, f(y))$$

- Some people in class visited the Grand Canyon
 - $A = \{\text{people}\}\ \dots$ Domain of variables
 - Predicates:
 - InClass(x) ... Returns true if x is in class
 - VisitedGC(x) ... Returns true if x visted the Grand Canyon
 - $\exists x. (InClass(x) \land VisitedGC(x))$

- Not all birds can fly
 - $A = \{birds\}$
 - Predicates:
 - Fly(x) ... Returns true if x can fly
 - $\neg \forall x. (Fly(x))$

All integers are either even or odd

```
\blacksquare A = \mathbb{N}
```

- Predicates:
 - Even(x) ... Returns true if x is even
 - Odd(x) ... Returns true if x is odd
- $\forall x. (Even(x) \oplus Odd(x))$

- 1. [Lecture] Model the following declarative sentences with predicate logic, as detailed as possible. Clearly indicate the intended meaning of all function, predicate, and constant symbols that you use.
 - (a) Alice has no sister.
 - (b) A person who wears a crown is either a king or a queen.
 - (c) Not everybody likes everybody.
 - (d) Everybody loves somebody.

- 1. [Lecture] Model the following declarative sentences with predicate logic, as detailed as possible. Clearly indicate the intended meaning of all function, predicate, and constant symbols that you use.
 - (a) Alice has no sister.
 - (b) A person who wears a crown is either a king or a queen.
 - (c) Not everybody likes everybody.
 - (d) Everybody loves somebody.
 - (a) \bullet *A* = {people}
 - Predicates:
 - $Alice(x) \dots x$ is Alice
 - Sister(x) ... x has a sister

- 1. [Lecture] Model the following declarative sentences with predicate logic, as detailed as possible. Clearly indicate the intended meaning of all function, predicate, and constant symbols that you use.
 - (a) Alice has no sister.
 - (b) A person who wears a crown is either a king or a queen.
 - (c) Not everybody likes everybody.
 - (d) Everybody loves somebody.
 - (a) \bullet *A* = {people}
 - Predicates:
 - Alice(x) ... x is Alice
 - Sister(x) ... x has a sister
 - $∀x(Alice(x) \rightarrow \neg Sister(x))$

- 1. [Lecture] Model the following declarative sentences with predicate logic, as detailed as possible. Clearly indicate the intended meaning of all function, predicate, and constant symbols that you use.
 - (a) Alice has no sister.
 - (b) A person who wears a crown is either a king or a queen.
 - (c) Not everybody likes everybody.
 - (d) Everybody loves somebody.

(b)

- $A = \{ \text{people} \}$
- WearsCrown(x) ... x wears a crown
- King(x) ... x is a king
- Queen(x) ... x is a queen
- $\forall x(WearsCrown(x) \rightarrow (King(x) \lor Queen(x))$

- 1. [Lecture] Model the following declarative sentences with predicate logic, as detailed as possible. Clearly indicate the intended meaning of all function, predicate, and constant symbols that you use.
 - (a) Alice has no sister.
 - (b) A person who wears a crown is either a king or a queen.
 - (c) Not everybody likes everybody.
 - (d) Everybody loves somebody.
 - - $\neg \forall x \forall y (Likes(x, y))$

- 1. [Lecture] Model the following declarative sentences with predicate logic, as detailed as possible. Clearly indicate the intended meaning of all function, predicate, and constant symbols that you use.
 - (a) Alice has no sister.
 - (b) A person who wears a crown is either a king or a queen.
 - (c) Not everybody likes everybody.
 - (d) Everybody loves somebody.
 - (d) $A = \{\text{people}\}\$ $Loves(x, y) \dots x \ loves y$
 - $\blacksquare \forall x \exists y (Loves(x, y))$

- 2. [Lecture] Consider the following declarative sentences:
 - "Every integer is greater or equal to one."
 - "For any two integers, their sum is smaller than their product"

- $\blacksquare A = \mathbb{N}$
- $x \ge y \dots x$ is greater or engal to 1 (in prefixed notation Geq(x,y))

- 2. [Lecture] Consider the following declarative sentences:
 - "Every integer is greater or equal to one."
 - "For any two integers, their sum is smaller than their product"

- (b) \bullet $A = \mathbb{N}$
 - x + y returns the sum of x and y (Note: function, not a predicate)
 - $x \cdot y$ returns the sum of x and y (Note: function, not a predicate)
 - x < y returns true if x is smaller than y

- 2. [Lecture] Consider the following declarative sentences:
 - "Every integer is greater or equal to one."
 - "For any two integers, their sum is smaller than their product"

(b)
$$\bullet A = \mathbb{N}$$

- -x + y returns the sum of x and y (Note: function, not a predicate)
- $x \cdot y$ returns the sum of x and y (Note: function, not a predicate)
- x < y returns true if x is smaller than y

3. [Lecture] Consider the following declarative sentence (known as Goldbach's Conjecture):

"Every even integer greater than 2 is equal to the sum of two prime numbers."

$$\mathcal{A} = \mathbb{N}$$
 $E(x) \dots x$ is even
 $G(x) \dots x$ is greater than 2
 $P(x) \dots x$ is prime

$$\forall x (E(x) \land G(x) \rightarrow \exists a, b(P(a) \land P(b) \land (x = a + b)))$$

Outline

Modelling Sentences

- Syntax
- Semantics, Models
 - Models
 - Satisfiability & Validity

Syntax of Predicate Logic

Terms

- Refer to Objects of the domain:
 - constants represent individual objects, e.g., Alice, Bob, 5, 3...
 - variables like x, y represent objects
 - functions symbols refer to objects like $x \cdot y$, f(x) ...

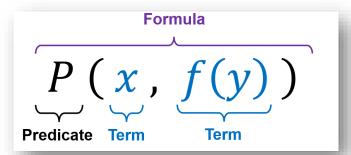
Formulas

- Have a truth value: predicates
- E.g., $x \cdot y == 1$

$$P(x, f(y))$$
Predicate Term Term

Formula

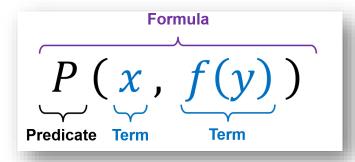
Syntax of Predicate Logic - Symbols



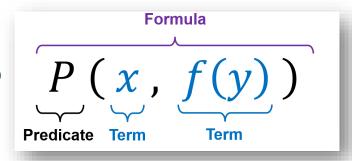
- Variables V
 - E.g., *x*, *y*, *z*, ...
- Functions F
 - f, g, h, ... (arity > 0)
 - constants (arity = 0)
- Predicates P
 - P, Q, R, ... (arity > 0)
 - Prop. constants (arity = 0)

Syntax of Predicate Logic - Terms

- Recursive Definition
 - Variable
 - Nullary Function (constant)
 - Given terms $t_1, t_2, ..., t_n$, and n-ary Function f \uparrow $f(t_1, t_2, ..., t_n) \text{ is a term}$



Syntax of Predicate Logic - Formulas



Preconditions:

- Terms t_1, t_2, \dots, t_n
- n-ary predicate
 symbol P
- formulas ϕ , ψ
- Variable x

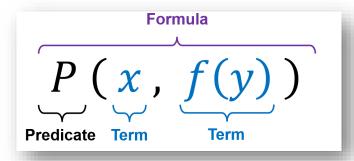
•
$$P(t_1, t_2, ..., t_n)$$

- $\bullet \phi \wedge \psi, \quad \phi \vee \psi, \quad \phi \rightarrow \psi$
- $\forall x \phi$

 $\exists x \phi$

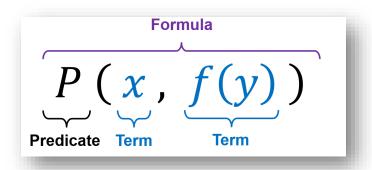
Binding Priorities

- 1. ∀, ∃, ¬
- **2.** \wedge
- 3. V
- **4.** →
 - Right-associative



Syntax of Predicate Logic

4. [Lecture] The syntax of predicate logic is defined via 2 types of sorts: terms and formulas. What are terms and what are formulas? Give examples for both.



Terms talk about objects:

- Constants like Bob or Alice
- Variables like x, y
- Function symbols like f(x) or x+y

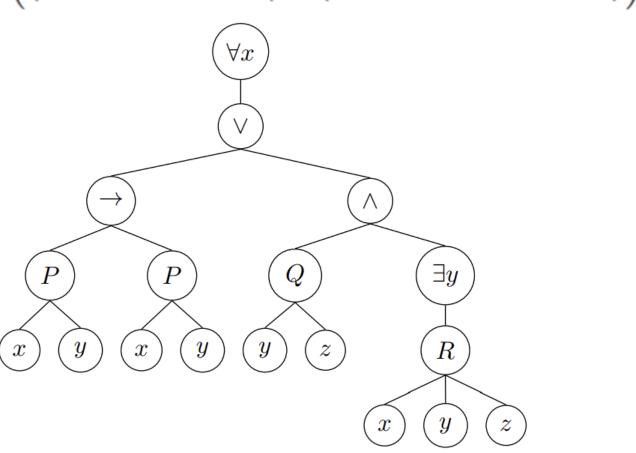
Formulas have a truth value:

• E.g., $\forall x (\forall y (x = y + 2))$ is a formula

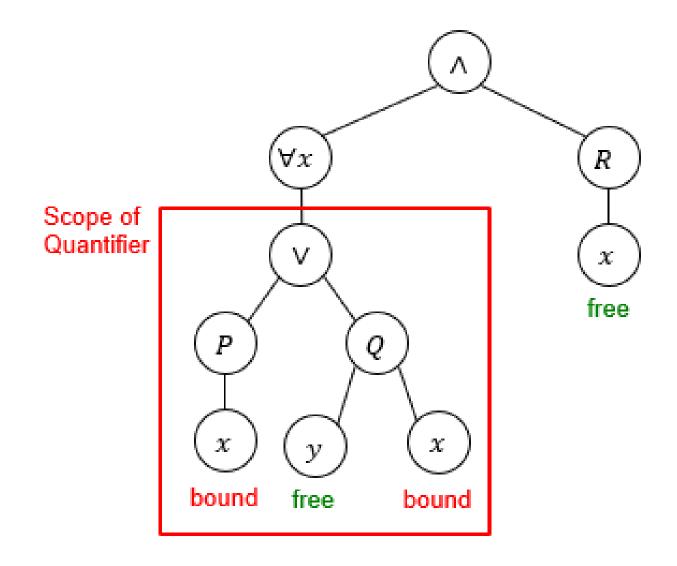
Syntax Tree

5. [Lecture] Draw a syntax tree for the following formula:

$$\forall x \left(\left(P(x,y) \to P(x,x) \right) \lor \left(Q(y,z) \land \exists y \ R(x,y,z) \right) \right)$$



Free and Bound Variables



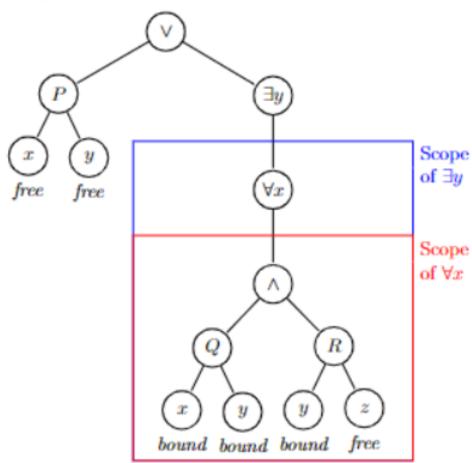
6.3 Free and Bound Variables

6. [Lecture] Given the formula

$$P(x,y) \vee \exists y \forall x (Q(x,y) \wedge R(y,z)),$$

construct a syntax tree for φ and determine the *scope* of its quantifiers and which occurrences

of the variables are free and which are bound.



Outline

Modelling Sentences

- Syntax
- Semantics, Models
 - Models
 - Satisfiability & Validity

Model M for Formulas in Predicate Logic

- Domain A
- For nullary $f \in \mathbb{F}$: concrete element $f^M \in A$
- For nullary $P \in \mathbb{P}$: true or false
- For other $f \in \mathbb{F}$: concrete function $f^M: A^n \to A$
- For $P \in \mathbb{P}$ with arity n > 0: subset $P^M \subseteq A^n$
- Value for free variables
 - Lookup table

Models in Predicate Logic

7. [Lecture] Give a model \mathcal{M} for the following formula:

$$\varphi \coloneqq \exists x \forall y P(x, y).$$

Models in Predicate Logic

7. [Lecture] Give a model \mathcal{M} for the following formula:

$$\varphi \coloneqq \exists x \forall y P(x, y).$$

$$\mathcal{M}: \mathcal{A} = \{a, b\}$$
$$P^{\mathcal{M}} = \{(a, a), (a, b)\}$$

Semantics of Predicate Logic

- We want to know if M satisfies φ
 - $M \models \phi$?
- For ϕ of the form $P(t_1, t_2, ..., t_n)$
 - Interpret all terms $t_1, ..., t_n$ via M
 - Obtain $(a_1, a_2, ..., a_n)$ with $a_i \in A$
 - $M \models P(t_1, t_2, ..., t_n)$ iff $(a_1, a_2, ..., a_n) \in P^M$

Semantics of Predicate Logic

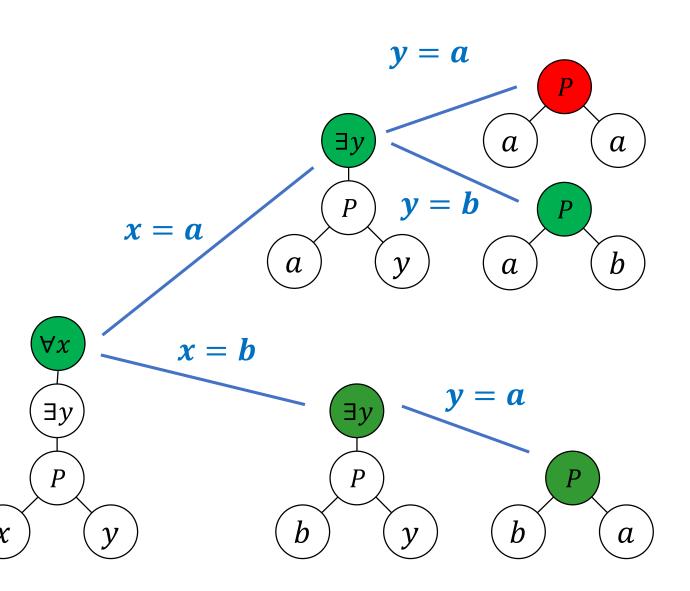
- For ϕ of the form $\forall x \psi$
 - $M \models \forall x \, \psi$ iff $M \models_{[x \leftarrow a]} \psi$, for all $a \in A$

 $[x \leftarrow a]$ means that x is mapped to a

- For ϕ of the form $\exists x \psi$
 - $M \models \exists x \, \psi$ iff $M \models_{[x \leftarrow a]} \psi$, for at least one $a \in A$
- For ϕ of the form $\neg \psi$, $\psi_1 \land \psi_2$, $\psi_1 \lor \psi_2$, $\psi_1 \rightarrow \psi_2$
 - Like in propositional logic

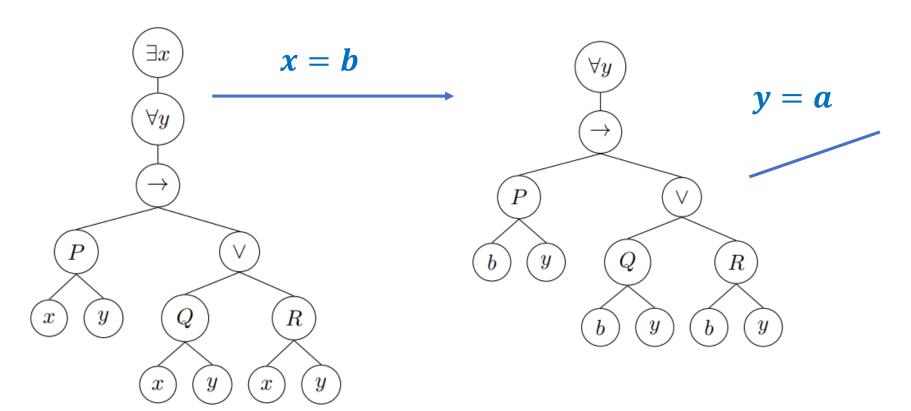
- Given

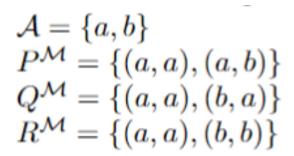
 - *M*:
 - $A = \{a, b\}$
 - $P^M = \{(a,b), (b,a)\}$
- $M \models \phi$?

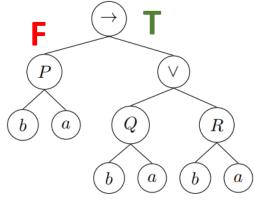


8 [Lecture] Consider the formula

$$\varphi = \exists x \forall y \ (P(x,y) \to (Q(x,y) \lor R(x,y))).$$

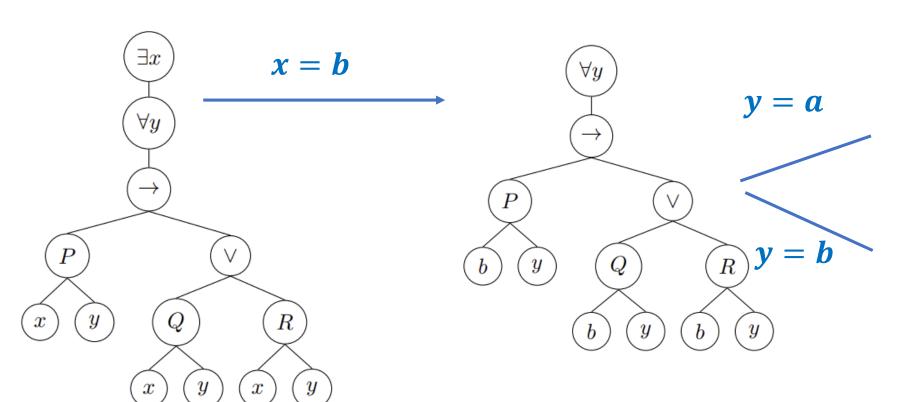


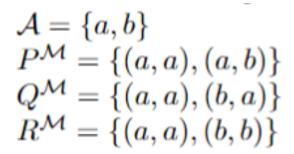


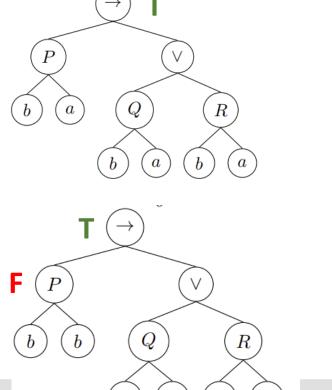


8 [Lecture] Consider the formula

$$\varphi = \exists x \forall y \ (P(x,y) \to (Q(x,y) \lor R(x,y))).$$

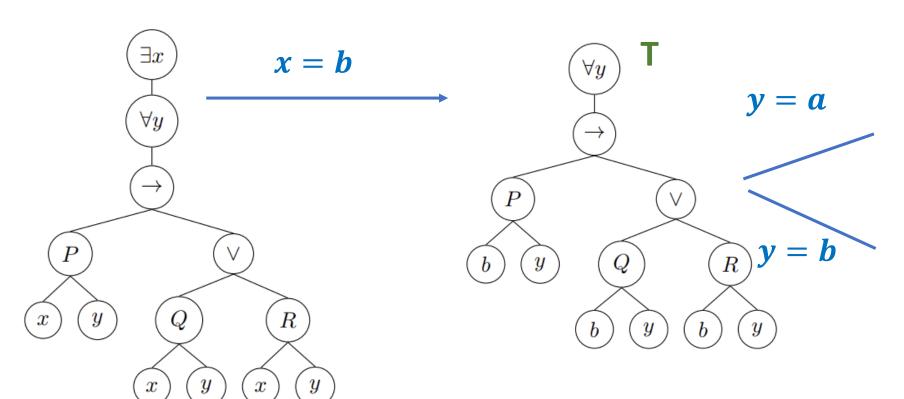


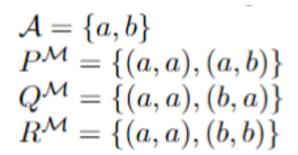


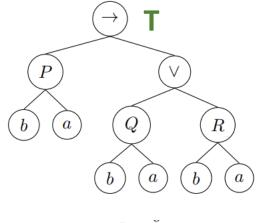


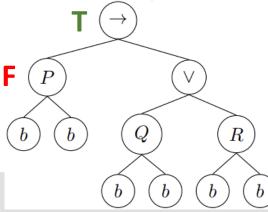
8 [Lecture] Consider the formula

$$\varphi = \exists x \forall y \ (P(x,y) \to (Q(x,y) \lor R(x,y))).$$



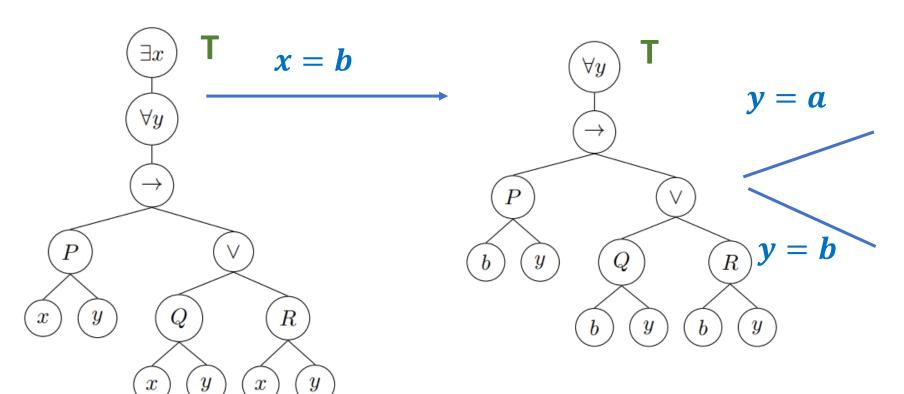


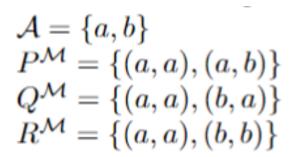


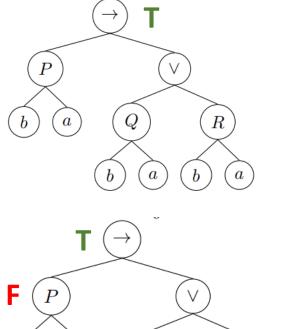


8 [Lecture] Consider the formula

$$\varphi = \exists x \forall y \ (P(x,y) \to (Q(x,y) \lor R(x,y))).$$

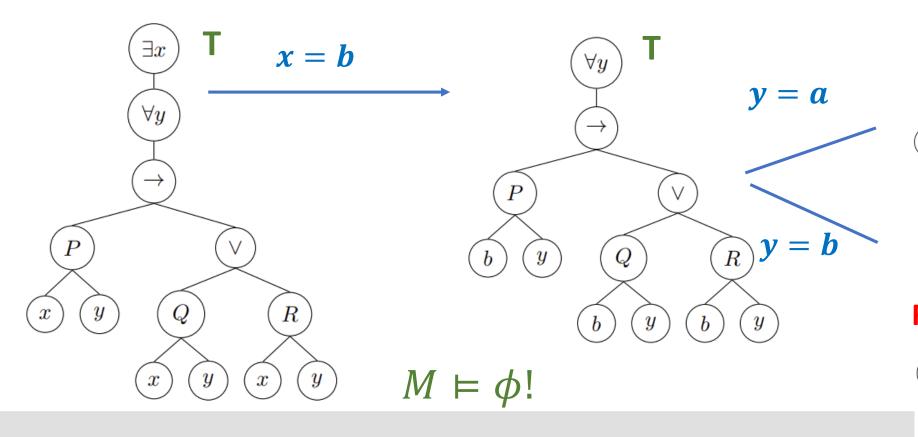


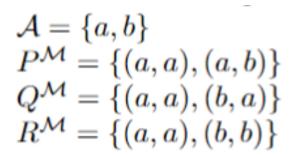


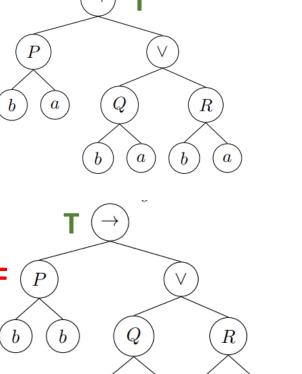


8 [Lecture] Consider the formula

$$\varphi = \exists x \forall y \ (P(x,y) \to (Q(x,y) \lor R(x,y))).$$







Thank You

