Logic and Computability

Modeling Systems \& Symbolic Encoding

Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at
Stefan Pranger
stefan.pranger@iaik.tugraz.at

A MATHEMATICAL MODEL IS A POWERFUL TOOL FOR TAKING HARD PROBLEMS AND MOVING THEM TO THE METHODS SECTION.

Motivation - Modelling Systems

- We want to reason about systems.
- Does the system satisfy certain properties?
- Model system as transition system
- Check properties on transition system
- State space is often huge
- Symbolic Encoding:
- Represent transition system as formulas
- Often possible to represent huge sets with relatively small formulas!

Outline

- Transition Systems
- Symbolic Encoding
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets

Transition Systems

- Model of a digital system
- T is a triple $\left(S, S_{0}, R\right)$
- Finite Set of States S
- Set of Initial States $\mathrm{S}_{0} \subseteq S$
- Transition Relation $\mathrm{R} \subseteq S \times S$
- Often visualized as directed Graph

$$
S=\left\{s_{1}, s_{2}, s_{3}\right\}, \quad S_{0}=\left\{s_{1}\right\}, \quad R=\left\{\left(s_{1}, s_{2}\right),\left(s_{2}, s_{1}\right),\left(s_{3}, s_{2}\right)\right\}
$$

Transition Systems - Example
[Lecture] Draw the graph for a transition system \mathcal{T} with: $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$,
$S_{0}=\left\{s_{2}\right\}$,
$R=\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{1}\right\},\left\{s_{2}, s_{4}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{3}, s_{1}\right\},\left\{s_{4}, s_{2}\right\},\left\{s_{4}, s_{3}\right\}\right\}$,

Transition Systems - Example

- Model a traffic light controller
- Initially the red light is on. After some time, the controller switches such that the red and the yellow light are on. After some time, the controller switches to green, from green to yellow, and from yellow back to red, and so on.
- Draw the transition systems
- States used:
- S_{r}... the red light is on.
- s_{y}... the yellow light is on.
- $S_{g} \ldots$ the green light is on.
- $s_{r y}$... the red and yellow lights are on

Transition Systems - Example

- Model an elevator
- Model an elevator that can traverse between the basement, the ground floor, the first and second floor. When the elevator is moving down from the second floor to the ground floor or basement, it cannot stop in the first floor.

Outline

- Transition Systems
- Symbolic Encoding
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets

Symbolic Encoding

- Systems have huge state spaces / number of transitions
- Therefore,
- Symbolically encode sets (of states and transitions)
- Perform set operations symbolically

Symbolic encoding/representation of sets = Encode/represent set as formulas

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{n}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}\right\}$
- Use 1 Boolean variable v_{0}
- The formula $\neg \boldsymbol{v}_{\mathbf{0}}$ symbolically represents the state $\boldsymbol{s}_{\mathbf{0}}$
- The formula $\boldsymbol{v}_{\mathbf{0}}$ symbolically represents the state $\boldsymbol{s}_{\mathbf{1}}$

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{\mathrm{n}}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$
- Use 2 Boolean variable v_{0} and v_{1}
- The formula $\neg v_{1} \wedge \neg v_{0}$ symbolically represents the state s_{0}
- The formula $v_{1} \wedge \neg v_{0}$ symbolically represents the state s_{1}
- The formula $\neg v_{1} \wedge v_{0}$ symbolically represents the state s_{2}
- The formula $v_{1} \wedge v_{0} \quad$ symbolically represents the state s_{3}

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{n}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{7}\right\}$
- Use 3 Boolean variable v_{0}, v_{1} and v_{2}
- The formula $\neg v_{2} \wedge \neg v_{1} \wedge \neg v_{0}$ symbolically s_{0}
....
- The formula $v_{2} \wedge v_{1} \wedge v_{0}$ symbolically s_{7}

Symbolic Encoding of the State Space

- Use variables $V=\left\{v_{0}, \ldots, v_{n-1}\right\}$ for binary representations of 2^{n} states

Symbolic Encoding of a Single State

- Single State
- Apply binary encoding
- E.g. State s_{2} is encoded as $\neg v_{2} \wedge v_{1} \wedge \neg v_{0}$

Symbolic Encoding of Sets of States

- Single State
- Example: Symbolically encode the set of states $\left\{s_{5}, s_{1}\right\}$
- Solution:

$$
\left(v_{2} \wedge \neg v_{1} \wedge v_{0}\right) \vee\left(\neg v_{2} \wedge \neg v_{1} \wedge v_{0}\right)=\neg v_{1} \wedge v_{0}
$$

Symbolic Encoding of Sets of States

- Single State
- Example: Symbolically encode all even numbered states
- Solution: $\neg \boldsymbol{v}_{0}$
- Remember goal of symbolic encoding: Encode large sets with relatively small formulas.

Outline

- Transition Systems
- Symbolic Encoding
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets

Symbolic Representation of a Single Transition

- Create a second set of variables V^{\prime} (Duplicate variables)
- variables in $v_{0}, v_{1}, v_{2}, \ldots \in V$ represent present state variables
- variables in $v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots \in V^{\prime}$ represent next state variables

$$
\neg v_{2} \wedge \neg v_{1} \wedge \neg v_{0} \quad \wedge \quad \neg v_{2}^{\prime} \wedge \neg v_{1}^{\prime} \wedge v_{0}^{\prime}
$$

Symbolic Representation of Sets of Transition

- Union of all edges
- Disjunction
- Good for sparse sets of edges
- 【T】
{missing edges } \} = Negation of union of all missing edges
- Good for dense sets of edges
- Recognize Patterns
- E.g. even numbered states have edges to (all) odd numbered states
- $\neg x_{0} \wedge x_{0}^{\prime}$

Symbolic Representation of Sets of Transition

- Example:
- Symbolically encode the transition relation

$$
\begin{aligned}
& \left(\neg v_{1} \wedge \neg v_{0} \wedge \neg v^{\prime}{ }_{1} \wedge v_{0}^{\prime}\right) \vee \\
& \left(\neg v_{1} \wedge v_{0} \wedge v_{1}^{\prime} \wedge \neg v_{0}^{\prime}\right) \vee \\
& \left(v_{1} \wedge \neg v_{0} \wedge v^{\prime}{ }_{1} \wedge v_{0}^{\prime}\right) \vee \\
& \left(v_{1} \wedge v_{0} \wedge \neg \neg v^{\prime}{ }_{1} \wedge \neg v_{0}^{\prime}\right)
\end{aligned}
$$

Symbolic Representation of Sets of Transition

[Lecture] Find a symbolic encoding for the transition relation of the following transition system and simplify your formulas. Use a binary encoding to encode the states, e.g., encode the state s_{2} with the formula $v_{1} \wedge \neg v_{0}$.

Symbolic Representation of Sets of Transition

[Lecture] Find a symbolic encoding for the transition relation of the following transition system and simplify your formulas. Use a binary encoding to encode the states, e.g., encode the state s_{2} with the formula $v_{1} \wedge \neg v_{0}$.

$$
\neg\left(v_{1} \wedge \neg v_{0} \wedge v_{1}^{\prime} \wedge \neg v_{0}^{\prime}\right)
$$

Symbolic Representation of Sets of Transition

[Lecture] Find a symbolic encoding for the transition relation of the following transition system and simplify your formulas. Use a binary encoding to encode the states, e.g., encode the state s_{2} with the formula $v_{1} \wedge \neg v_{0}$.

Symbolic Representation of Sets of Transition

[Lecture] Find a symbolic encoding for the transition relation of the following transition system and simplify your formulas. Use a binary encoding to encode the states, e.g., encode the state s_{2} with the formula $v_{1} \wedge \neg v_{0}$.

Symbolic Representation of Sets of Transition

- Union of all edges
- Disjunction
- Good for sparse sets of edges
- 【T】
{missing edges } \} = Negation of union of all missing edges
- Good for dense sets of edges
- Recognize Patterns
- E.g. even numbered states have edges to (all) odd numbered states
- $\neg x_{0} \wedge x_{0}^{\prime}$

Outline

- Transition Systems
- Symbolic Encoding
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets

Symbolic Encoding of arbitrary Sets

- Domain: e.g. $\mathrm{D}=\{$ Austria, Germany, Spain,Italy\}
- \#Vars $=\lceil l d(|\mathrm{D}|)\rceil$

Symbolic Encoding of arbitrary Sets

- Domain: e.g. $\mathrm{D}=\{$ Austria, Germany, Spain, Italy $\}$
- \#Vars $=\lceil l d(|\mathrm{D}|)\rceil$

Element	Encoding	
	x_{1}	x_{0}
Austria		
Germany		
Spain		
Italy		

Symbolic Encoding of arbitrary Sets

- Domain: e.g. $\mathrm{D}=\{$ Austria, Germany, Spain, Italy $\}$
- \#Vars $=\lceil l d(|\mathrm{D}|)\rceil$

Element	Encoding	
	$x_{\mathbf{1}}$	x_{0}
Austria	0	0
Germany	0	1
Spain	1	0
Italy	1	1

Symbolic Encoding of arbitrary Sets

- $F=\{$ Austria $\}$

Element	Encoding	
	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{0}}$
Austria	0	0
Germany	0	1
Spain	1	0
Italy	1	1

Symbolic Encoding of arbitrary Sets

- $F=\{$ Austria $\}$
- $f=\neg x_{0} \wedge \neg x_{1}$

Element	Encoding	
	$x_{\mathbf{1}}$	$x_{\mathbf{0}}$
Austria	0	0
Germany	0	1
Spain	1	0
Italy	1	1

Symbolic Encoding of arbitrary Sets

- $F=\{$ Austria $\}$
- $f=\neg x_{0} \wedge \neg x_{1}$
- $G=\{$ Austria, Spain $\}$

Element	Encoding	
	$x_{\mathbf{1}}$	$x_{\mathbf{0}}$
Austria	0	0
Germany	0	1
Spain	1	0
Italy	1	1

Symbolic Encoding of arbitrary Sets

- $F=\{$ Austria $\}$
- $f=\neg x_{0} \wedge \neg x_{1}$
- $G=\{$ Austria, Spain $\}$
- $g=\neg x_{0}$

Element	Encoding	
	$x_{\mathbf{1}}$	$x_{\mathbf{0}}$
Austria	0	0
Germany	0	1
Spain	1	0
Italy	1	1

Symbolic Encoding of arbitrary Sets

Element	Encoding	
	x_{1}	x_{0}
Austria	0	0
Germany	1	0
Spain	1	1
Italy	0	1

Element	Encoding	
	x_{1}	x_{0}
Austria	0	0
Germany	1	0
Spain	0	1
Italy	1	1

- Which encoding gives the shorter formula for the set $B=\{$ Germany,Spain\}?

Symbolic Encoding of arbitrary Sets

Element	Encoding	
	x_{1}	x_{0}
Austria	0	0
Germany	1	0
Spain	1	1
Italy	0	1

Element	Encoding	
	x_{1}	x_{0}
Austria	0	0
Germany	1	0
Spain	0	1
Italy	1	1

- Which encoding gives the shorter formula for the set $B=\{G e r m a n y, S p a i n\} ?$
- Answer: The first encoding:

$$
f_{\text {encoding } 1}=x_{1} \quad f_{\text {encoding } 2}=x_{1} \oplus x_{0}
$$

Encoding Natural Numbers

- Binary Representation
- Domain D: Usually Power of 2
- E.g.: $D=\left\{x \in \mathbb{N} \mid x<2^{12}\right\}$

Outline

- Transition Systems
- Symbolic Encoding
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets

Symbolic Operations

- Intersection: $F \cap G \Leftrightarrow f \wedge g$
- Union: $F \cup G \Leftrightarrow f \vee g$
- Difference: $F \backslash G \Leftrightarrow f \wedge \neg g$
- Equality: $F=G \Leftrightarrow f \leftrightarrow g$
- Subset: $F \subseteq G \Leftrightarrow f \rightarrow g$

Example

- Domain: $A=\{x \in \mathbb{N} \mid 0 \leq x \leq 1023\}$

10 bit binary representation $x_{9} x_{8} \ldots . x_{0}$

- $B=\{x \in A \mid x<512\}$
- $C=\{x \in A \mid 256 \leq x<768\}$
- $D=B \cup C$
- $E=B \cap C$
- $F=A \mid E$
- Compute the symbolic representations for B,C,D,E, and F

Example

- Domain: $A=\{x \in \mathbb{N} \mid 0 \leq x \leq 1023\}$

10 bit binary representation $x_{9} x_{8} \ldots x_{0}$

- $B=\{x \in A \mid x<512\}, b=\neg x_{9}$
- $C=\{x \in A \mid 256 \leq x<768\}, c=\left(\neg x_{9} \wedge x_{8}\right) \vee\left(x_{9} \wedge \neg x_{8}\right) ? \begin{gathered}511 \\ 512 \\ 767\end{gathered}$
- $D=B \cup C \quad d=\neg x_{9} \vee\left(\left(\neg x_{9} \wedge x_{8}\right) \vee\left(x_{9} \wedge \neg x_{8}\right)\right)=\neg x_{9} \vee\left(x_{9} \wedge \neg x_{8}\right)$
- $E=B \cap C \quad e=\neg x_{9} \wedge\left(\left(\neg x_{9} \wedge x_{8}\right) \vee\left(x_{9} \wedge \neg x_{8}\right)\right)=\neg x_{9} \wedge x_{8}$
- $F=A \mid E \quad f=T \wedge \neg\left(\neg x_{9} \wedge x_{8}\right)=x_{9} \vee \neg x_{8}$

Thank You

