Logic and Computability

S C I E N C E P A S S I O N T E C H N O L O G Y

Temporal Logic

Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at

Stefan Pranger stefan.pranger@iaik.tugraz.at

https://xkcd.com/1393/

² Warm Up – Modelling sentences

Translate the following sentences in propositional logic:

"If there is coffee and cake, then the workshop is a success."

³ Warm Up – Modelling sentences

Translate the following sentences in propositional logic:

- "If there is coffee and cake, then the workshop is a success."
 - p... there is coffee, q... there is cake, r... the workshop is a success
 - $p \land q \rightarrow r$

Warm Up – Modelling sentences

Translate the following sentences in propositional logic:

"If there is a request, the arbiter gives a grant in the next time step."

• "If there is a request, the arbiter gives a grant within the **next two time steps**."

• "If there is a request, the arbiter gives a grant eventually. "

⁵ Warm Up – Modelling sentences

Translate the following sentences in propositional logic:

- "If there is a request, the arbiter gives a grant in the next time step."
 - p... there is a request, q... arbiter gives a grant in the next time step
 - $p \rightarrow q$
- "If there is a request, the arbiter gives a grant within the **next two time steps**."

• "If there is a request, the arbiter gives a grant eventually. "

⁶ Warm Up – Modelling sentences

Translate the following sentences in propositional logic:

- "If there is a request, the arbiter gives a grant in the **next time step**."
 - p... there is a request, q... arbiter gives a grant in the next time step

• $p \rightarrow q$

- "If there is a request, the arbiter gives a grant within the **next two time steps**."
 - p... there is a request, q... arbiter gives a grant within the next two time steps
 - $p \rightarrow q$
- "If there is a request, the arbiter gives a grant eventually. "

⁷ Warm Up – Modelling sentences

Translate the following sentences in propositional logic:

- "If there is a request, the arbiter gives a grant in the **next time step**."
 - p... there is a request, q... arbiter gives a grant in the next time step

• $p \rightarrow q$

- "If there is a request, the arbiter gives a grant within the **next two time steps**."
 - p... there is a request, q... arbiter gives a grant within the next two time steps
 - $p \rightarrow q$
- "If there is a request, the arbiter gives a grant eventually."
 - p... there is a request, q... the arbiter gives a grant eventually
 - $p \rightarrow q$

⁸ Motivation

- We want to specify properties of hardware and software
- Temporal operators allow to encode formula about the future of paths
 - a condition will eventually be true
 - a condition will be true until another fact becomes true
 - etc
- Model Checking
 - Checks whether a model of a system meets a given specification
 - Specification typically expressed in temporal logic

Outline

- Temporal Operators
 - Modelling Sentences
- Kripke Structures
 - Temporal Properties on Kripke Structures
- CTL*
 - Path Operators
 - Intuitive Meaning + Syntax

¹⁰ Temporal Operators

Describe properties that hold along an execution path of a system

Next Xp Always / Gloabally Gp Finally / Eventually Fp

¹¹ Translate in temporal logic

Translate the following sentences in temporal propositional logic:

• "If there is a request, the arbiter gives a grant in the **next time step**."

• "If there is a request, the arbiter gives a grant within the **next two time steps**."

• "If there is a request, the arbiter gives a grant eventually. "

¹² Translate in temporal logic

Translate the following sentences in temporal propositional logic:

- "If there is a request, the arbiter gives a grant in the next time step."
 - r... there is a request, g... arbiter gives grant
 - $G(r \rightarrow Xg)$
- "If there is a request, the arbiter gives a grant within the **next two time steps**."

• "If there is a request, the arbiter gives a grant **eventually**. "

¹³ Translate in temporal logic

Translate the following sentences in temporal propositional logic:

- "If there is a request, the arbiter gives a grant in the next time step."
 - r... there is a request, g... arbiter gives grant
 - $G(r \rightarrow Xg)$
- "If there is a request, the arbiter gives a grant within the **next two time steps**."
 - r... there is a request, g... arbiter gives grant
 - $G(r \rightarrow (Xg \lor XXg))$
- "If there is a request, the arbiter gives a grant **eventually**. "

¹⁴ Translate in temporal logic

Translate the following sentences in temporal propositional logic:

- "If there is a request, the arbiter gives a grant in the next time step."
 - r... there is a request, g... arbiter gives grant
 - $G(r \rightarrow Xg)$
- "If there is a request, the arbiter gives a grant within the **next two time steps**."
 - r... there is a request, g... arbiter gives grant
 - $G(r \rightarrow (Xg \lor XXg))$
- "If there is a request, the arbiter gives a grant **eventually**. "
 - r... there is a request, g... arbiter gives grant
 - $G(r \rightarrow Fg)$

Translate the following sentences in temporal propositional logic:

- a) The system gives a grant infinitely often.
- b) The system sends a request finitely often.
- "The system gives a grant infinitely often."

"The system sends a request finitely often."

Temporal Operators X... next **G**... globally **F**... eventually

Translate the following sentences in temporal propositional logic:

- a) The system gives a grant infinitely often.
- b) The system sends a request finitely often.
- "The system gives a grant infinitely often."
 - g... the system sends a grant
 - GF(g)
- "The system sends a request finitely often."

Temporal Operators X... next **G**... globally **F**... eventually

Translate the following sentences in temporal propositional logic:

- a) The system gives a grant infinitely often.
- b) The system sends a request finitely often.
- "The system gives a grant infinitely often."
 - g... the system sends a grant
 - GF(g)
- "The system sends a request finitely often."
 - r... system sends a request
 - FG(¬r)

¹⁸ Temporal Operators

Next Xp Always / Gloabally Gp Finally / Eventually Fp Until pUq

¹⁹ Temporal Operators

Translate the following sentences in temporal propositional logic:

• "The request is high until the arbiter gives a grant."

²⁰ Temporal Operators

Translate the following sentences in temporal propositional logic:

"The request is high until the arbiter gives a grant."

r... request is high, g... arbiter gives grant

r U g

Outline

- Temporal Operators
 - Modelling Sentences
- Kripke Structures
 - Temporal Properties on Kripke Structures
- CTL*
 - Path Operators
 - Intuitive Explanation

²² Kripke Structures

- Let AP be a set of Boolean variables (atomic propositions)
- A Kripke Structure is a tuple $K=(S, S_0, R, L)$
 - Finite Set of States S
 - Set of Initial States $S_0 \subseteq S$
 - Transition Relation $R \subseteq S \times S$
 - Labeling function: $L : S \rightarrow 2^{AP}$

https://en.wikipedia.org/wiki/Kripke_structure_(model_checking)

²³ Kripke Structure - Example

- In this example, $AP = \{p,q\}$ and $K=(S, S_0, R, L)$ with
 - $S = \{s_1, s_2, s_3\}$
 - $S_0 = \{s_1\}$
 - $R = \{(s_1, s_2), (s_2, s_1), (s_2, s_3), (s_3, s_3)\}$
 - $L = \{(s_1, \{p, q\}), (s_2, \{q\}), (s_3, \{p\})\}$

https://en.wikipedia.org/wiki/Kripke_structure_(model_checking)

²⁴ Kripke Structures – Paths and Words

- Given a Kripke Structure $K=(S, S_0, R, L)$
- A path is a is a sequence of states $\rho = s_1, s_2 \dots$ s.t. for each i > 0, $R(s_i, s_{i+1})$ hold
- The word on the path ρ is a sequence of sets of the atomic propositions $w = L(s_1), L(s_2), L(s_3), ...$

²⁵ Kripke Structures – Paths and Words - Example

- Given a Kripke Structure $K=(S, S_0, R, L)$
- Given a path $\rho = s_1, s_2, s_1, s_2, s_3, s_3, s_3, \dots = s_1, s_2, s_1, s_2, s_3^{\omega}$
- What is the execution word w over the path ρ ?

²⁶ Kripke Structures – Paths and Words - Example

- Given a Kripke Structure $K=(S, S_0, R, L)$
- Given a path $\rho = s_1, s_2, s_1, s_2, s_3, s_3, s_3, \dots = s_1, s_2, s_1, s_2, s_3^{\omega}$
- What is the execution word w over the path ρ ?
- w = {p, q}, {q}, {p, q}, {q}, {p}^{\omega}

Given the following execution word w of a Kripke structure. Evaluate the formula φ on w. Evaluate each sub-formula for any execution step using the provided table.

w = {} {a}, {a}, {b}, {}, {a}, {a, b}^ω
φ = Xa ∨ a U b

Step	0	1	2	3	4	5	ω
a	0	1	1	0	0	1	1
b	0	0	0	1	0	0	1
Xa							
aUb							
$Xa \lor aUb$							

Given the following execution word w of a Kripke structure. Evaluate the formula φ on w. Evaluate each sub-formula for any execution step using the provided table.

w = {} {a}, {a}, {b}, {}, {a}, {a, b}^ω
φ = Xa ∨ a U b

Step	0	1	2	3	4	5	ω
a	0	1	1	0	0	1	1
b	0	0	0	1	0	0	1
Xa	1	1	0	0	1	1	1
Xa aUb	1 0	1 1	0	0	1 0	1 1	1

- Given the following execution word w of a Kripke structure. Evaluate the formula φ on w. Evaluate each sub-formula for any execution step using the provided table.
- w = {} {a}, { }, {a,b,c}, {a}, {a,b}, ({a}, {a, c}, {a, c})^{\omega} • $\varphi = GFa \rightarrow (FG \neg b \land c)$

Step	0	1	2	3	4	5		ω	
a	0	1	0	1	1	1	1	1	1
b	0	0	0	1	0	1	0	0	0
с	0	0	0	1	0	0	0	1	1
GFa									
$FG\neg b$									
$FG \neg b \land c$									
φ									

Given the following execution word w of a Kripke structure. Evaluate the formula φ on w. Evaluate each sub-formula for any execution step using the provided table.

• w = {} {a}, { }, {a,b,c}, {a}, {a,b}, ({a}, {a, c}, {a, c})^{\omega} • $\varphi = GFa \rightarrow (FG \neg b \land c)$

Step	0	1	2	3	4	5		ω	
a	0	1	0	1	1	1	1	1	1
b	0	0	0	1	0	1	0	0	0
с	0	0	0	1	0	0	0	1	1
GFa	1	1	1	1	1	1	1	1	1
					-			<u> </u>	_
$FG\neg b$	1	1	1	1	1	1	1	1	1
$\begin{array}{c} FG\neg b \\ FG\neg b \wedge c \end{array}$	1 0	1 0	1 0	1	1 0	1 0	1 0	1 1 1	1 1 1

Outline

- Temporal Operators
 - Modelling Sentences
- Kripke Structures
 - Temporal Properties on Kripke Structures
- CTL*
 - Path Operators
 - Intuitive Explanation

³² Properties of Kripke Structures - Example

Kripke Structure $K=(S, S_0, R, L)$

- Robot navigating within a city
- Kripke structure models its allowed movements
 - E.g., if the robot enters the sea, it cannot leave it anymore

³³ Properties of Kripke Structures - Example

Specify the following properties in temporal logic:

- It is always the case that the robot never visits X.
- It is possible that the robot never visits X.

³⁴ Properties of Kripke Structures - Example

Temporal Operators
X... next
G... globally
F... eventually
U... until
Path quantifiers
A for all paths
E there exists a path

Specify the following properties in temporal logic:

- It is always the case that the robot never visits X.
 - $A G \neg x$
- It is possible that the robot never visits X.
 - *E G* ¬*x*

Translate the following sentences in CTL*.

For any execution, it always holds that whenever the robot visits A, it visits C within the next two steps.

There exists an execution such that the robot visits
 C within the next two steps after visiting A


```
Temporal Operators
X... next
G... globally
F... eventually
U... until
Path quantifiers
A for all paths
E there exists a path
```

Translate the following sentences in CTL*.

- For any execution it always holds that whenever the robot visits A, it visits C within the next two steps.
 - $A G (a \rightarrow Xc \lor XXc)$

There exists an execution such that the robot visits
 C within the next two steps after visiting A

• $E G (a \rightarrow Xc \lor XXc)$


```
Temporal Operators
X... next
G... globally
F... eventually
U... until
Path quantifiers
A for all paths
E there exists a path
```

- Translate the following sentences in CTL*.
- The robot can visit A infinitely often and C infinitely often

Always, the robot visits A infinitely often and C infinitely often

If the robot visits A *infinitely often*, it should also visit C *finitely often*.

Temporal Operators
X... next
G... globally
F... eventually
U... until
Path quantifiers
A for all paths
E there exists a path

Translate the following sentences in CTL*.

- The robot can visit A infinitely often and C infinitely often
 - $E(GF a \wedge GF c)$
- Always, the robot visits A *infinitely often* and C *infinitely often* A (GF a ∧ FG ¬c)
- If the robot visits A *infinitely often*, it should also visit C *finitely often*. • $A(GF a \rightarrow GFc)$

Temporal Operators
X... next
G... globally
F... eventually
U... until
Path quantifiers
A for all paths
E there exists a path

³⁹ Computation Tree Logic – CTL*

Defines properties of computation trees of Kripke structures

⁴⁰ Computation Tree Logic – CTL*

- Propositional Logic extended with
- Path quantifiers:
 - A for all paths starting from s have property ϕ
 - E there exists a path starting from s have property $oldsymbol{arphi}$
 - Use combination of A and E to describe branching structure in tree
- Temporal operators
 - NeXt $X\varphi$: φ has to hold at the next state
 - Finally $-F \varphi$: eventually φ has to hold (somewhere on the subsequent path)
 - Globally G φ : φ has to hold on the entire subsequent path.
 - Until $\varphi U \psi$: ψ has to hold *at least* until φ becomes true, which must hold at the current or a future position.

⁴¹ Computation Tree Logic – CTL* - Syntax

A CTL* formula is a "state formula"

- State formula: φ ≔ p | ¬φ | φ ∨ φ | φ ∧ φ | Ef | Af with f beeing a path formula, and p beeing an atomic proposition
- Path formula: $f \coloneqq \varphi \mid \neg f \mid f \lor f \mid f \land f \mid Xf \mid Ff \mid Gf \mid fUf$

Given the following Kripke structure. Does s_0 satisfy the following formulas? • $\varphi_1 = EXX(a \wedge b)$

```
Kripke structure K,
labeled with AP = \{a, b, c\}
```

Given the following Kripke structure. Does s_0 satisfy the following formulas? • $\varphi_1 = EXX(a \wedge b)$

Given the following Kripke structure K. Does s_0 satisfy the following formulas?

- $\varphi_1 = EXp$
- $\varphi_2 = EG \neg p$

Given the following Kripke structure K. Does s_0 satisfy the following formulas? Explain your answer.

- $\varphi_1 = EXp$
- $\varphi_2 = EG \neg p$

 $K \models EXp$ $\mathbf{K} \not\models EG \neg p$

⁴⁶ Example – Mutual Exclusion

- Two processes with a joint Boolean signal sem
- Each process P_i has a variable v_i describing its state:
 - $v_i = N$ Non-critical
 - $v_i = T$ Trying
 - v_i = C Critical

⁴⁷ Example – Mutual Exclusion

- Does it hold that $K \models \varphi$?
 - Property 1: $\varphi := \mathbf{AG} \neg (C_1 \land C_2)$

⁴⁸ Example – Mutual Exclusion

- Does it hold that $K \vDash \varphi$?
 - Property 1: $\varphi := \mathbf{AG} \neg (C_1 \land C_2)$

⁴⁹ Example – Mutual Exclusion

- Does it hold that $K \vDash \varphi$?
 - Property 2: $\varphi := \mathbf{AG} \neg (\mathsf{T}_1 \land \mathsf{T}_2)$

⁵⁰ Example – Mutual Exclusion

- Does it hold that $K \vDash \varphi$?
 - Property 2: $\varphi := \mathbf{AG} (\mathbf{T}_1 \wedge \mathbf{T}_2)$

⁵¹ Example – Mutual Exclusion

- Does it hold that $K \models \phi$?
 - Property 3: $\varphi := \mathbf{AG EF} (\mathbf{N}_1 \wedge \mathbf{N}_2 \wedge \mathbf{S}_0)$

⁵² Example – Mutual Exclusion

- Does it hold that $K \vDash \varphi$?
 - Property 3: $\varphi := \mathbf{AG} \mathbf{EF} (\mathbf{N}_1 \wedge \mathbf{N}_2 \wedge \mathbf{S}_0)$
- No matter where you are there is always a way to get to the initial state (restart)

⁵³ Example – Mutual Exclusion

- Does it hold that $K \vDash \varphi$?
 - Property 3: $\varphi := AG EF (N_1 \land N_2 \land S_0)$
- No matter where you are there is always a way to get to the initial state (restart)

https://xkcd.com/1033/