
Bettina Könighofer 
bettina.koenighofer@iaik.tugraz.at

Logic and Computability

Temporal Logic

Stefan Pranger
stefan.pranger@iaik.tugraz.at

https://xkcd.com/1393/



2

Translate the following sentences in propositional logic:

▪ “If there is coffee and cake, then the workshop is a success. “

Warm Up – Modelling sentences



3

Translate the following sentences in propositional logic:

▪ “If there is coffee and cake, then the workshop is a success. “

▪ p… there is coffee, q… there is cake, r… the workshop is a success 
▪ 𝑝 ∧ 𝑞 → 𝑟

Warm Up – Modelling sentences



4

Translate the following sentences in propositional logic:

▪ “If there is a request, the arbiter gives a grant in the next time step. “
▪ p… there is a request, q… arbiter gives a grant within the next two time steps 

▪ 𝑝 → q

▪ “If there is a request, the arbiter gives a grant within the next two time steps. “
▪ p… there is a request, q… arbiter gives a grant within the next three time steps 

▪ 𝑝 → q

▪ “If there is a request, the arbiter gives a grant eventually. “
▪ p… there is a request, q… the arbiter gives a grant eventually

▪ 𝑝 → q

Warm Up – Modelling sentences



5

Translate the following sentences in propositional logic:

▪ “If there is a request, the arbiter gives a grant in the next time step. “
▪ p… there is a request, q… arbiter gives a grant in the next time step

▪ 𝑝 → q

▪ “If there is a request, the arbiter gives a grant within the next two time steps. “
▪ p… there is a request, q… arbiter gives a grant within the next three time steps 

▪ 𝑝 → q

▪ “If there is a request, the arbiter gives a grant eventually. “
▪ p… there is a request, q… the arbiter gives a grant eventually

▪ 𝑝 → q

Warm Up – Modelling sentences



6

Translate the following sentences in propositional logic:

▪ “If there is a request, the arbiter gives a grant in the next time step. “
▪ p… there is a request, q… arbiter gives a grant in the next time step 

▪ 𝑝 → q

▪ “If there is a request, the arbiter gives a grant within the next two time steps. “
▪ p… there is a request, q… arbiter gives a grant within the next two time steps 

▪ 𝑝 → q

▪ “If there is a request, the arbiter gives a grant eventually. “
▪ p… there is a request, q… the arbiter gives a grant eventually

▪ 𝑝 → q

Warm Up – Modelling sentences



7

Translate the following sentences in propositional logic:

▪ “If there is a request, the arbiter gives a grant in the next time step. “
▪ p… there is a request, q… arbiter gives a grant in the next time step 

▪ 𝑝 → q

▪ “If there is a request, the arbiter gives a grant within the next two time steps. “
▪ p… there is a request, q… arbiter gives a grant within the next two time steps 

▪ 𝑝 → q

▪ “If there is a request, the arbiter gives a grant eventually. “
▪ p… there is a request, q… the arbiter gives a grant eventually

▪ 𝑝 → q

Warm Up – Modelling sentences



8

▪ We want to specify properties of hardware and software

▪ Temporal operators allow to encode formula about the future of paths
▪ a condition will eventually be true
▪ a condition will be true until another fact becomes true
▪ etc

▪ Model Checking
▪ Checks whether a model of a system meets a given specification
▪ Specification typically expressed in temporal logic

Motivation



Outline
9

▪ Temporal Operators
▪ Modelling Sentences 

▪ Kripke Structures
▪ Temporal Properties on Kripke Structures

▪ CTL*
▪ Path Operators
▪ Intuitive Meaning + Syntax



10

▪ Describe properties that hold along an execution path of a system

Temporal Operators

Next Xp

Always / Gloabally Gp

Finally / Eventually   Fp

p



11

Translate the following sentences in temporal propositional logic:

▪ “If there is a request, the arbiter gives a grant in the next time step. “
▪ r… there is a request, g… arbiter gives grant

▪ G(r → Xg)

▪ “If there is a request, the arbiter gives a grant within the next two time steps. “
▪ r… there is a request, g… arbiter gives grant

▪ G(r → (Xg ∨ XXg))

▪ “If there is a request, the arbiter gives a grant eventually. “
▪ r… there is a request, g… arbiter gives grant

▪ G(r → Fg)

Translate in temporal logic

Temporal Operators
X… next
G… globally
F… eventually



12

Translate the following sentences in temporal propositional logic:

▪ “If there is a request, the arbiter gives a grant in the next time step. “
▪ r… there is a request, g… arbiter gives grant

▪ G(r → Xg)

▪ “If there is a request, the arbiter gives a grant within the next two time steps. “
▪ r… there is a request, g… arbiter gives grant

▪ G(r → (Xg ∨ XXg))

▪ “If there is a request, the arbiter gives a grant eventually. “
▪ r… there is a request, g… arbiter gives grant

▪ G(r → Fg)

Translate in temporal logic

Temporal Operators
X… next
G… globally
F… eventually



13

Translate the following sentences in temporal propositional logic:

▪ “If there is a request, the arbiter gives a grant in the next time step. “
▪ r… there is a request, g… arbiter gives grant

▪ G(r → Xg)

▪ “If there is a request, the arbiter gives a grant within the next two time steps. “
▪ r… there is a request, g… arbiter gives grant

▪ G(r → (Xg ∨ XXg))

▪ “If there is a request, the arbiter gives a grant eventually. “
▪ r… there is a request, g… arbiter gives grant

▪ G(r → Fg)

Translate in temporal logic

Temporal Operators
X… next
G… globally
F… eventually



14

Translate the following sentences in temporal propositional logic:

▪ “If there is a request, the arbiter gives a grant in the next time step. “
▪ r… there is a request, g… arbiter gives grant

▪ G(r → Xg)

▪ “If there is a request, the arbiter gives a grant within the next two time steps. “
▪ r… there is a request, g… arbiter gives grant

▪ G(r → (Xg ∨ XXg))

▪ “If there is a request, the arbiter gives a grant eventually. “
▪ r… there is a request, g… arbiter gives grant

▪ G(r → Fg)

Translate in temporal logic

Temporal Operators
X… next
G… globally
F… eventually



15

▪ “The system gives a grant infinitely often.“
▪ g… the system sends a grant

▪ GF(g)

▪ “The system sends a request finitely often.“
▪ r… system sends a request

▪ FG(¬r)
Temporal Operators
X… next
G… globally
F… eventually

Translate the following sentences in temporal propositional logic:
a) The system gives a grant infinitely often.
b) The system sends a request finitely often. 



16

▪ “The system gives a grant infinitely often.“
▪ g… the system sends a grant

▪ GF(g)

▪ “The system sends a request finitely often.“
▪ r… system sends a request

▪ FG(¬r)
Temporal Operators
X… next
G… globally
F… eventually

Translate the following sentences in temporal propositional logic:
a) The system gives a grant infinitely often.
b) The system sends a request finitely often. 



17

▪ “The system gives a grant infinitely often.“
▪ g… the system sends a grant

▪ GF(g)

▪ “The system sends a request finitely often.“
▪ r… system sends a request

▪ FG(¬r)
Temporal Operators
X… next
G… globally
F… eventually

Translate the following sentences in temporal propositional logic:
a) The system gives a grant infinitely often.
b) The system sends a request finitely often. 



18 Temporal Operators

Next     Xp

Always / Gloabally Gp

Finally / Eventually   Fp

Until pUq

Temporal Operators
X… next
G… globally
F… eventually
U… until



19 Temporal Operators

Next     Xp

Always / Gloabally Gp

Finally / Eventually   Fp

Until pUq

Translate the following sentences in temporal propositional logic:

▪ “The request is high until the arbiter gives a grant. “
▪ r… request is high, g… arbiter gives grant

▪ r U g

Temporal Operators
X… next
G… globally
F… eventually
U… until



20 Temporal Operators

Next     Xp

Always / Gloabally Gp

Finally / Eventually   Fp

Until pUq

Translate the following sentences in temporal propositional logic:

▪ “The request is high until the arbiter gives a grant. “
▪ r… request is high, g… arbiter gives grant

▪ r U g

Temporal Operators
X… next
G… globally
F… eventually
U… until



Outline
21

▪ Temporal Operators
▪ Modelling Sentences 

▪ Kripke Structures
▪ Temporal Properties on Kripke Structures

▪ CTL*
▪ Path Operators
▪ Intuitive Explanation



22 Kripke Structures 

▪ Let AP be a set of Boolean variables (atomic propositions)
▪ A Kripke Structure is a tuple K= 𝑆, 𝑆0, 𝑅, 𝐿

▪ Finite Set of States 𝑆
▪ Set of Initial States S0 ⊆ 𝑆
▪ Transition Relation R ⊆ 𝑆 × 𝑆
▪ Labeling function: L ∶ 𝑆 → 2𝐴𝑃

𝑠1 𝑠2

𝑠3

https://en.wikipedia.org/wiki/Kripke_structure_(model_checking)



23 Kripke Structure - Example

▪ In this example, AP = {p,q} and K= 𝑆, 𝑆0, 𝑅, 𝐿 with
▪ 𝑆 = {s1, s2, s3}
▪ S0 = {s1}
▪ R = { s1, s2 , s2, s1 , s2, s3 , (s3, s3)}
▪ L = { s1, p, q , s2, q , (s3, {p})}

https://en.wikipedia.org/wiki/Kripke_structure_(model_checking)

𝑠1 𝑠2

𝑠3



24 Kripke Structures – Paths and Words 

▪ Given a Kripke Structure K= 𝑆, 𝑆0, 𝑅, 𝐿

▪ A path is a is a sequence of states 𝜌 = 𝑠1, 𝑠2 …
s.t. for each i > 0, 𝑅(𝑠𝑖 , 𝑠𝑖+1) hold

▪ The word on the path ρ is a sequence of sets 

of the atomic propositions w = L(s1), L(s2), L(s3), ...
𝑠1 𝑠2

𝑠3



25 Kripke Structures – Paths and Words - Example 

▪ Given a Kripke Structure K= 𝑆, 𝑆0, 𝑅, 𝐿

▪ Given a path 𝜌 = 𝑠1, 𝑠2, 𝑠1, 𝑠2, 𝑠3, 𝑠3, 𝑠3, … = 𝑠1, 𝑠2, 𝑠1, 𝑠2, 𝑠3
𝜔

▪ What is the execution word w over the path ρ?

𝑠1 𝑠2

𝑠3



26 Kripke Structures – Paths and Words - Example 

▪ Given a Kripke Structure K= 𝑆, 𝑆0, 𝑅, 𝐿

▪ Given a path 𝜌 = 𝑠1, 𝑠2, 𝑠1, 𝑠2, 𝑠3, 𝑠3, 𝑠3, … = 𝑠1, 𝑠2, 𝑠1, 𝑠2, 𝑠3
𝜔

▪ What is the execution word w over the path ρ?

▪ w = {p, q}, {q}, {p, q}, {q}, {𝑝}𝜔

𝑠1 𝑠2

𝑠3



27 Given the following execution word w of a Kripke structure. Evaluate the 
formula 𝜑 on w.  Evaluate each sub-formula for any execution step using the 
provided table.

▪ w = {} {a}, {a}, {b}, {}, {a}, a, b 𝜔

▪ 𝜑 = 𝑋𝑎 ∨ 𝑎 𝑈 𝑏



28 Given the following execution word w of a Kripke structure. Evaluate the 
formula 𝜑 on w.  Evaluate each sub-formula for any execution step using the 
provided table.

▪ w = {} {a}, {a}, {b}, {}, {a}, a, b 𝜔

▪ 𝜑 = 𝑋𝑎 ∨ 𝑎 𝑈 𝑏

1 1 0 0 1 1 1

0 1 1 1 0 1 1

1 1 1 1 1 1 1



29 Given the following execution word w of a Kripke structure. Evaluate the 
formula 𝜑 on w.  Evaluate each sub-formula for any execution step using the 
provided table.

▪ w = {} {a}, { }, {a,b,c}, {a}, {a,b}, ( a , 𝑎, 𝑐 , 𝑎, 𝑐 )𝜔

▪ 𝜑 = 𝐺𝐹𝑎 → (𝐹𝐺¬𝑏 ∧ 𝑐)



30 Given the following execution word w of a Kripke structure. Evaluate the 
formula 𝜑 on w.  Evaluate each sub-formula for any execution step using the 
provided table.

▪ w = {} {a}, { }, {a,b,c}, {a}, {a,b}, ( a , 𝑎, 𝑐 , 𝑎, 𝑐 )𝜔

▪ 𝜑 = 𝐺𝐹𝑎 → (𝐹𝐺¬𝑏 ∧ 𝑐)

1 1 1 1 1 1 1

1 1 1 1 1 1 1

0 0 0 1 0 0 0

1 1

1 1
1 1

0 0 0 1 0 0 0 1 1



Outline
31

▪ Temporal Operators
▪ Modelling Sentences 

▪ Kripke Structures
▪ Temporal Properties on Kripke Structures

▪ CTL*
▪ Path Operators
▪ Intuitive Explanation



32 Properties of Kripke Structures - Example

a b

x
c

▪ Robot navigating within a city
▪ Kripke structure models its allowed movements

▪ E.g., if the robot enters the sea, it cannot leave it anymore

Kripke Structure K= 𝑆, 𝑆0, 𝑅, 𝐿



33 Properties of Kripke Structures - Example

a b

x
c

Specify the following properties in temporal logic:
▪ It is always the case that the robot never visits X.

▪ It is possible that the robot never visits X.

Temporal Operators
X… next
G… globally
F… eventually
U… until



34 Properties of Kripke Structures - Example

a b

x
c

Specify the following properties in temporal logic:
▪ It is always the case that the robot never visits X.

▪ 𝐴 𝐺 ¬𝑥
▪ It is possible that the robot never visits X.

▪ 𝐸 𝐺 ¬𝑥

Temporal Operators
X… next
G… globally
F… eventually
U… until
Path quantifiers
A for all paths
E there exists a path



35

a b

x
c

Temporal Operators
X… next
G… globally
F… eventually
U… until
Path quantifiers
A for all paths
E there exists a path

Translate the following sentences in CTL*. 
▪ For any execution, it always holds that whenever the robot 

visits A, it visits C within the next two steps.

▪ There exists an execution such that the robot visits 
C within the next two steps after visiting A



36

a b

x
c

Temporal Operators
X… next
G… globally
F… eventually
U… until
Path quantifiers
A for all paths
E there exists a path

Translate the following sentences in CTL*. 
▪ For any execution it always holds that whenever the robot 

visits A, it visits C within the next two steps.
▪ 𝐴 𝐺 (𝑎 → 𝑋𝑐 ∨ 𝑋𝑋𝑐)

▪ There exists an execution such that the robot visits 
C within the next two steps after visiting A
▪ 𝐸 𝐺 (𝑎 → 𝑋𝑐 ∨ 𝑋𝑋𝑐)



37

a b

x
c

Temporal Operators
X… next
G… globally
F… eventually
U… until
Path quantifiers
A for all paths
E there exists a path

Translate the following sentences in CTL*. 
▪ The robot can visit A infinitely often and C infinitely often

▪ Always, the robot visits A infinitely often and C infinitely often

▪ If the robot visits A infinitely often,  it should also visit C finitely often.



38

a b

x
c

Temporal Operators
X… next
G… globally
F… eventually
U… until
Path quantifiers
A for all paths
E there exists a path

Translate the following sentences in CTL*. 
▪ The robot can visit A infinitely often and C infinitely often

▪ 𝐸 (𝐺𝐹 𝑎 ∧ 𝐺𝐹 𝑐)

▪ Always, the robot visits A infinitely often and C infinitely often
▪ 𝐴 (𝐺𝐹 𝑎 ∧ 𝐹𝐺 ¬𝑐)

▪ If the robot visits A infinitely often,  it should also visit C finitely often.
▪ 𝐴 (𝐺𝐹 𝑎 → 𝐺𝐹𝑐)



▪ Defines properties of computation trees of Kripke structures

a,b

b,c c

a,b

b,c c

cca,b

Kripke structure 𝐾,
labeled with 𝐴𝑃 = {𝑎, 𝑏, 𝑐}

Unwinding of 𝐾 into 
infinite computation tree

Computation Tree Logic – CTL*39

𝝆𝟏

𝝆𝟐



16.06.2023 40

▪ Propositional Logic extended with

▪ Path quantifiers: 
▪ A for all paths starting from s have property 𝝋

▪ E there exists a path starting from s have property 𝝋

▪ Use combination of A and E to describe branching structure in tree

▪ Temporal operators
▪ NeXt - 𝑿𝝋: 𝝋 has to hold at the next state

▪ Finally −F 𝝋: eventually 𝝋 has to hold (somewhere on the subsequent path)

▪ Globally - G 𝝋: φ has to hold on the entire subsequent path.

▪ Until − 𝜑 𝑈 𝜓: ψ has to hold at least until φ becomes true,
which must hold at the current or a future position.

40 Computation Tree Logic – CTL*



16.06.2023 41

▪ A CTL* formula is a „state formula“

▪ State formula: 𝜑 ≔ 𝑝 ¬𝜑 𝜑 ∨ 𝜑 𝜑 ∧ 𝜑 𝐸𝑓 | 𝐴𝑓
with f beeing a path formula, and 𝑝 beeing an atomic propostion

▪ Path formula: 𝑓 ≔ 𝜑 ¬𝑓 𝑓 ∨ 𝑓 𝑓 ∧ 𝑓 𝑋𝑓 | 𝐹𝑓 | 𝐺𝑓 |𝑓𝑈𝑓

41 Computation Tree Logic – CTL* - Syntax



42

42 Given the following Kripke structure. Does 𝑠0 satisfy the following formulas?
▪ 𝜑1 = 𝐸𝑋𝑋 𝑎 ∧ 𝑏

a,b

b,c c

Kripke structure 𝐾,
labeled with 𝐴𝑃 = {𝑎, 𝑏, 𝑐}



43

• 𝑠0 ⊨ EXX (a ∧ 𝑏)

43

a,b

b,c c

a,b

b,c c

cca,b

Kripke structure 𝐾,
labeled with 𝐴𝑃 = {𝑎, 𝑏, 𝑐}

Unwinding of 𝐾 into 
infinite computation tree

Given the following Kripke structure. Does 𝑠0 satisfy the following formulas?
▪ 𝜑1 = 𝐸𝑋𝑋 𝑎 ∧ 𝑏



16.06.2023 44

s0

p ¬ p

44
Given the following Kripke structure K. 
Does 𝑠0 satisfy the following formulas?
▪ 𝜑1 = 𝐸𝑋𝑝
▪ 𝜑2 = 𝐸𝐺¬𝑝

p p



16.06.2023 45

s0

p ¬ p

45
Given the following Kripke structure K. 
Does 𝑠0 satisfy the following formulas? Explain your answer.
▪ 𝜑1 = 𝐸𝑋𝑝
▪ 𝜑2 = 𝐸𝐺¬𝑝

K ⊨ EX p
K ⊭ 𝐸𝐺¬𝑝

p p



C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

46 Example – Mutual Exclusion

• Two processes with a joint Boolean signal sem

• Each process Pi has a variable vi describing its state:
• vi = N    Non-critical

• vi = T    Trying

• vi = C    Critical



• Does it hold that K ⊨ 𝜑?

• Property 1: 𝜑 := AG(C1C2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

47 Example – Mutual Exclusion



• Does it hold that K ⊨ 𝜑?

• Property 1: 𝜑 := AG(C1C2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

48 Example – Mutual Exclusion



• Does it hold that K ⊨ 𝜑?

• Property 2: 𝜑 := AG(T1T2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

49 Example – Mutual Exclusion



• Does it hold that K ⊨ 𝜑?

• Property 2: 𝜑 := AG(T1T2)

50 Example – Mutual Exclusion

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2



▪ Does it hold that K ⊨ 𝜑?

▪ Property 3: 𝜑 := AG EF (N1 N2 S0)

T1,T2 ,S0

T1,C2,S1

N1,C2,S1

N1,T2,S0

N1,N2,S0

T1,N2,S0

C1,N2,S1

C1,T2,S1

51 Example – Mutual Exclusion



▪ Does it hold that K ⊨ 𝜑?

▪ Property 3: 𝜑 := AG EF (N1 N2 S0)

▪ No matter where you are there is always a way to get to the initial state

(restart)

T1,T2 ,S0

T1,C2,S1

N1,C2,S1

N1,T2,S0

N1,N2,S0

T1,N2,S0

C1,N2,S1

C1,T2,S1

52 Example – Mutual Exclusion



▪ Does it hold that K ⊨ 𝜑?

▪ Property 3: 𝜑 := AG EF (N1 N2 S0)

▪ No matter where you are there is always a way to get to the initial state

(restart)

T1,T2 ,S0

T1,C2,S1

N1,C2,S1

N1,T2,S0

N1,N2,S0

T1,N2,S0

C1,N2,S1

C1,T2,S1

53 Example – Mutual Exclusion



Thank You

54

54

https://xkcd.com/1033/


