Logic and Computability

Temporal Logic

Bettina Konighofer
bettina.koenighofer@iaik.tugraz.at

TU

Grazm

SCIENCE
PASSION

TECHNOLOGY

Stefan Pranger
stefan.pranger@iaik.tugraz.at

https://xkcd.com/1393/

..200005000p 092 - FORREST GUMP CAME OUT | | ToDAYS NEW PARENTS WERE| | THE STAAARART OF MY
TiIME 1s PASSIING! CLOSER To THE VIETNAM LIAR WL#@”B’WEH GoT BIG.| | AANTING IS NOW FOTHER
J U6 THAN'TO THE PRESENT DAPAY.| | DARARASD pyuuuysic | [ALAY THAN YOUR DEAAATHS!
§ Tmasrll y THEY anﬂémmw ﬁ L YOU 5T
— HUH? mfm AT THE EARUEST | — WHAT
HD?E“’”E ~/ How LONGHRS IT) W
THE FACTOS. < ppoe! BEEN oG se| | -o00%s0° (

T

kil

KB \Varm Up — Modelling sentences .
Translate the following sentences in propositional logic: 4K\ i

= “If there is coffee and cake, then the workshop is a success. “

BB \\arm Up — Modelling sentences .
Translate the following sentences in propositional logic: 4K\
= “If there is coffee and cake, then the workshop is a success.

" p... there is coffee, g... there is cake, r... the workshop is a success
"pAq—>T

KB \\arm Up — Modelling sentences .
Translate the following sentences in propositional logic: 4 K\ {

= “If there is a request, the arbiter gives a grant in the next time step. “
= “If there is a request, the arbiter gives a grant within the next two time steps. “

= “If there is a request, the arbiter gives a grant eventually. “

Bl \\arm Up — Modelling sentences .
Translate the following sentences in propositional logic: K\
= “If there is a request, the arbiter gives a grant in the next time step. “
" p...there is arequest, q... arbiter gives a grant in the next time step

"P—q

= “If there is a request, the arbiter gives a grant within the next two time steps. “

= “If there is a request, the arbiter gives a grant eventually. “

KB \Varm Up — Modelling sentences .
Translate the following sentences in propositional logic: K\
= “If there is a request, the arbiter gives a grant in the next time step. “
" p...there is arequest, q... arbiter gives a grant in the next time step

"P—q

= “If there is a request, the arbiter gives a grant within the next two time steps. “
" p...there is arequest, q... arbiter gives a grant within the next two time steps

“"P—q

= “If there is a request, the arbiter gives a grant eventually. “

7 []
BB \\arm Up — Modelling sentences .
Translate the following sentences in propositional logic: K\
= “If there is a request, the arbiter gives a grant in the next time step. “
" p...there is arequest, q... arbiter gives a grant in the next time step

"P—q

= “If there is a request, the arbiter gives a grant within the next two time steps. “
" p...there is arequest, q... arbiter gives a grant within the next two time steps

“"P—q

= “If there is a request, the arbiter gives a grant eventually. “
" p...there is a request, q... the arbiter gives a grant eventually

"P—q

n Motivation

= We want to specify properties of hardware and software

* Temporal operators allow to encode formula about the future of paths

= a condition will eventually be true
= a3 condition will be true until another fact becomes true
= etc

= Model Checking

» Checks whether a model of a system meets a given specification
= Specification typically expressed in temporal logic

Outline

" Temporal Operators
= Modelling Sentences

= Kripke Structures
" Temporal Properties on Kripke Structures

= CTL*
= Path Operators
" |ntuitive Meaning + Syntax

E) Temporal Operators

" Describe properties that hold along an execution path of a system

P
Next Xp - @ O O » 0 0 ©

Always / Gloabally Gp @ —@ —@ —@ ——— °* o o
Finally / Eventually Fp O O @) » 0O 0 O

K3 Translate in temporal logic

Translate the following sentences in temporal propositional logic:

= “If there is a request, the arbiter gives a grant in the next time step. “

= “If there is a request, the arbiter gives a grant within the next two time steps. “

Temporal Operators
= “If there is a request, the arbiter gives a grant eventually. “ X... next

G... globally

F... eventually

Bl Translate in temporal logic

Translate the following sentences in temporal propositional logic:

= “If there is a request, the arbiter gives a grant in the next time step. “
» r...there is arequest, g... arbiter gives grant

" G(r - Xg)

= “If there is a request, the arbiter gives a grant within the next two time steps.

Temporal Operators

= “If there is a request, the arbiter gives a grant eventually. “ X... next
G... globally

F... eventually

B Translate in temporal logic

Translate the following sentences in temporal propositional logic:

= “If there is a request, the arbiter gives a grant in the next time step. “
» r...there is arequest, g... arbiter gives grant

" G(r - Xg)

= “If there is a request, the arbiter gives a grant within the next two time steps. “
" r...there is a request, g... arbiter gives grant

" G(r » (XgV XXg))

Temporal Operators

= “If there is a request, the arbiter gives a grant eventually. “ X... next
G... globally

F... eventually

B Translate in temporal logic

Translate the following sentences in temporal propositional logic:

= “If there is a request, the arbiter gives a grant in the next time step. “
» r...there is arequest, g... arbiter gives grant

" G(r - Xg)

= “If there is a request, the arbiter gives a grant within the next two time steps. “
" r...there is a request, g... arbiter gives grant

" G(r » (XgV XXg))

Temporal Operators

= “If there is a request, the arbiter gives a grant eventually. “ X... next
: : . G... globally
" r...thereis arequest, g... arbiter gives grant

F... eventually
" G(r = Fg)

H Translate the following sentences in temporal propositional logic:
a) The system gives a grant infinitely often.
b) The system sends a request finitely often.

" “The system gives a grant infinitely often.”

" “The system sends a request finitely often.”

Temporal Operators
X... next

G... globally

F... eventually

n Translate the following sentences in temporal propositional logic:
a) The system gives a grant infinitely often.
b) The system sends a request finitely often.

" “The system gives a grant infinitely often.”
= g... the system sends a grant

" GF(g)

" “The system sends a request finitely often.”

Temporal Operators
X... next

G... globally

F... eventually

17 . . . :
. Translate the following sentences in temporal propositional logic:
a) The system gives a grant infinitely often.
b) The system sends a request finitely often.

" “The system gives a grant infinitely often.”
= g... the system sends a grant

" GF(g)

" “The system sends a request finitely often.”
" r...system sends a request

- FG(—lr)

Temporal Operators
X... next

G... globally

F... eventually

£l Temporal Operators

Next Xp O @ O O O 0 O
Always / Gloabally Gp @ @ @ —@ — ° o 0
Finally / Eventually Fp O O @ O O o0 O
Until pUq @ —@ —@ O 0 0 O

Temporal Operators
X... next

G... globally

F... eventually

U... until

Kl Temporal Operators

Next Xp O @ O O O 0 O
Always / Gloabally Gp @ @ @ —@ — ° o 0
Finally / Eventually Fp O O @ O 0O 0 O©
Until pUq @ —@ —@ O 0 0 O

Translate the following sentences in temporal propositional logic: | Temporal Operators
X... next

= “The request is high until the arbiter gives a grant. “ G... globally
F... eventually

U... until

Kl Temporal Operators

Next Xp O & O O
Always / Gloabally Gp @ —"T@& @ —@
Finally / Eventually Fp O O @ O
Until pUq @ @ @ O

Translate the following sentences in temporal propositional logic:

= “The request is high until the arbiter gives a grant. “
" r...requestis high, g... arbiter gives grant

"rUg

Temporal Operators
X... next

G... globally

F... eventually

U... until

Outline

= Temporal Operators J
= Modelling Sentences

= Kripke Structures
" Temporal Properties on Kripke Structures

= CTL*
= Path Operators
= [ntuitive Explanation

k3 Kripke Structures

= Let AP be a set of Boolean variables (atomic propositions)
= A Kripke Structure is a tuple K=(S, Sy, R, L)

" Finite Set of States S

= Set of Initial States Sy € §

" Transition Relation R € S X §

= Labeling function: L : § — 24F

https://en.wikipedia.org/wiki/Kripke_structure_(model_checking)

ﬂKripke Structure - Example

= |n this example, AP = {p,q} and K=(S, Sy, R, L) with
= S ={s1,82,83}
" So = {51}
= R = {(s1,52), (52,51), (S2,53), (53,53)}
= L = {(s1,{p,a}), (s2,{q}), (s3, {p})}

https://en.wikipedia.org/wiki/Kripke_structure_(model_checking)

ﬂKripke Structures — Paths and Words

= Given a Kripke Structure K=(S,S,, R, L)

= A pathisaisasequence of statesp = 54,5, ...
s.t. for each i > 0, R(s;, S;+1) hold

= The word on the path p Is a sequence of sets
of the atomic propositions w = L(s,), L(s,), L(s3), ...

S1
{p.a}

ﬂKripke Structures — Paths and Words - Example
= Given a Kripke Structure K=(S,S,, R, L)

: _— _— w
*= Givenapathp = s4,5,,5¢,5,,53,53,53, ... = S1,52,51,52, 53
= What is the execution word w over the path p?

ﬂKripke Structures — Paths and Words - Example
= Given a Kripke Structure K=(S,S,, R, L)

: —_ —_ w
= Givenapath p = s¢,5,,5¢,55,53,53,53, ... = S1,52,51,S59, 53
= What is the execution word w over the path p?

w={p,q}, {a}, {p, a}, {a}, {p}

Given the following execution word w of a Kripke structure. Evaluate the
formula ¢ on w. Evaluate each sub-formula for any execution step using the
provided table.

" w={}{a}, {a}, {b}, {}, {a}, {a, b}*
"p=XavaUb

Step 0 1 2 3 4 5 W
a 0 1 1 () 0 1 1
b 0 0 0 1 0 0 1
Xa

al/b

XaVvaUb

Given the following execution word w of a Kripke structure. Evaluate the
formula ¢ on w. Evaluate each sub-formula for any execution step using the
provided table.

" w={}{a}, {a}, {b}, {}, {a}, {a, b}*
"p=XavaUb

Step
a

b

Xa
al/b
XaVvaUb

RO ||| O D
ol e N |] Y S
el Ll R0 | W] I Y
Rl Ol = O W
RO RO O =
R == & = O

TN N Rl B

Given the following execution word w of a Kripke structure. Evaluate the
formula ¢ on w. Evaluate each sub-formula for any execution step using the
provided table.

*w={}{a}, {}{ab.c} {a}, {ab}, ({a},{a, ch 1a,c})®
" = GFa — (FG—Ib/\C)

Step 0 1 2 3 4 5 W
a 0 1 0 ' 1 1 1 1
b 0 0 0 0 1 0 0
C 0 0 0 0 0 0 1
GFa

FG—b

FG-bA e

v,

Given the following execution word w of a Kripke structure. Evaluate the

formula ¢ on w. Evaluate each sub-formula for any execution step using the
provided table.

*w={}{a}, {}{ab.c} {a}, {ab}, ({a},{a, ch 1a,c})®
" = GFa — (FG—Ib/\C)

Step 0 1 2 3 4 5 W

a 0 1 0 ' 1 1 1 1 1
b 0 0 0 0 1 0 0 0
C 0 0 0 0 0 0 1 1
G Fa 1 1 1 1 1 1 1 1 1
FG-b 1 1 1 1 1 1 1 1 1
FG-bA e 0 0 0 1 0 0 0 1 1
0 0 0 0 1 0 0 0 1 1

Outline

= Temporal Operators J
= Modelling Sentences

= Kripke Structures
" Temporal Properties on Kripke Structures J

= CTL*
= Path Operators
= [ntuitive Explanation

ﬂProperties of Kripke Structures - Example
&@W A B ‘e.é Kripke Structure K=(S,S,, R, L)

c (<)

@ X
[m L T 9 "

= Robot navigating within a city
= Kripke structure models its allowed movements
= E.g., ifthe robot enters the sea, it cannot leave it anymore

ﬂProperties of Kripke Structures - Example

erl, Bl LB
T 1 Cc ()
e B J—x

Specify the following properties in temporal logic:
= |t is always the case that the robot never visits X.

Temporal Operators
: : . . X... next

= |t is possible that the robot never visits X.

G... globally

F... eventually

U... until

ﬂProperties of Kripke Structures - Example

Temporal Operators
‘- A -
@nA B e ° X... next
e V G... globally
T © F... eventually
U... until

A = Path quantifiers
o X jit; C ° o A for all paths
[V\I\.-' L ' g

X/ E there exists a path

Specify the following properties in temporal logic:
= |t is always the case that the robot never visits X.
= AG—x
= |t is possible that the robot never visits X.
= G —x

Translate the following sentences in CTL*.
= For any execution, it always holds that whenever the robot

visits 7, it visits C within the next two steps.

= There exists an execution such that the robot visits

C within the next two steps after visiting 2

A N\
og’

O A0

"

Temporal Operators
X... next

G... globally

F... eventually

U... until

Path quantifiers

A for all paths

E there exists a path

ﬂ Translate the following sentences in CTL*.

= For any execution it always holds that whenever the robot

visits 7, it visits C within the next two steps.

"AG (a - XcV XXc)

= There exists an execution such that the robot visits

C within the next two steps after visiting 2.

" EG(a » XcV XXc)

A N\
og’

O A0

"

Temporal Operators
X... next

G... globally

F... eventually

U... until

Path quantifiers

A for all paths

E there exists a path

Translate the following sentences in CTL*.
"= The robot can visit 2 infinitely often and C infinitely often

= Always, the robot visits 2 infinitely often and C infinitely often

= |f the robot visits 2 infinitely often, it should also visit C finitely often.

Temporal Operators
.- A N
@,A B o ° X... next

S G... globally

= 2 F... eventually
il]] U... until
- - Path quantifiers
[",‘_ X L T C ° 9 A for all paths

X/ E there exists a path

Translate the following sentences in CTL*.

"= The robot can visit 2 infinitely often and C infinitely often
" £ (GF a ANGF ¢)

= Always, the robot visits /2 infinitely often and C infinitely often
" A(GF aANFG =)

= |f the robot visits 2 infinitely often, it should also visit C finitely often.
" A(GF a - GFc)

Temporal Operators
.- A N
JA B o ° X... next
| S G... globally
X

5 F... eventually
T ' U... until

Path quantifiers

[':é:' ¢ t » C ° ° A forgll paths

== — R

pe X/ E there exists a path

ﬂComputation Tree Logic — CTL*

" Defines properties of computation trees of Kripke structures

. Unwinding of K into
Kripke structure K, infinite computation tree
labeled with AP = {a, b, c} @ ’

g pl pz
T ROE

nComputation Tree Logic — CTL*

" Propositional Logic extended with

" Path quantifiers:
= A for all paths starting from s have property ¢
" E there exists a path starting from s have property @
= Use combination of A and E to describe branching structure in tree

" Temporal operators
= NeXt - X¢: @ has to hold at the next state
" Finally —F ¢: eventually ¢ has to hold (somewhere on the subsequent path)
= Globally - G ¢@: ¢ has to hold on the entire subsequent path.

= Until =¢@ U y: ¢ has to hold at least until ¢ becomes true,
which must hold at the current or a future position.

nComputation Tree Logic — CTL* - Syntax

= A CTL* formula is a , state formula“

= State formula: @ ==p | @ | @Vl AQ|Ef | Af
with f beeing a path formula, and p beeing an atomic propostion

* Pathformula: f =@ [f [fFVFIfAFIXFIFfIGEIfUS

ﬂ Given the following Kripke structure. Does s, satisfy the following formulas?
= ¢, =EXX(aADb)

Kripke structure K,
labeled with AP = {a, b, ¢}

T

n Given the following Kripke structure. Does s, satisfy the following formulas?
= ¢, =EXX(aADb)

Unwinding of K into

Kripke structure K
P ’ infinite computation tree

labeled with AP = {a, b, ¢}

Y

Given the following Kripke structure K.

Does s, satisfy the following formulas?
" @1 =LEXp
" P2 =LEGp

So

& &

Given the following Kripke structure K.
Does s, satisfy the following formulas? Explain your answer.

" @ =EXp
" P2 =LEGp
i
SO K|=EXp

K EG—lp

& &

k2 Example — Mutual Exclusion

* Two processes with a joint Boolean signal sem

* Each process P, has a variable v, describing its state:
* v.=N Non-critical
*v.=T Trying
*v.=C Critical

Example — Mutual Exclusion

* Does it holdthat K = ¢?
* Property 1: ¢ := AG—(C,AC,)

k) Example — Mutual Exclusion

* Does it hold that K = ¢?
* Property 1: ¢ := AG—(C,AG,) s

k) Example — Mutual Exclusion

* Does it hold that K = ¢?
* Property 2: ¢ := AG—(T,AT,)

£l Example — Mutual Exclusion

* Does it hold that K = ¢?
* Property 2: ¢ := AG—(T,AT,) x

s Example — Mutual Exclusion

" DoesitholdthatK E @?
» Property 3: ¢ := AG EF (N; AN, AS,)

k3 Example — Mutual Exclusion

" DoesitholdthatK E @?
» Property 3: ¢ := AG EF (N; AN, AS,)

= No matter where you are there is always a way to get to the initial state
(restart)

= Example — Mutual Exclusion

" DoesitholdthatK E @?
= Property 3: ¢ := AG EF (N; AN, ASy)

= No matter where you are there is always a way to get to the initial state
(restart)

nThank You

https://xkcd.com/1033/

