
IAIK

IAIK

Mobile Security Research
Mobile Security 2023

Florian Draschbacher
florian.draschbacher@iaik.tugraz.at
Some slides based on material by Yanick Fratantonio



IAIK

● You should be close to finishing your tasks!

● Deadline on Monday, 12th of June

● Questions?
- Q&A after the lecture
- Send me an email

Practicals



Introduction



IAIK

● You developed an intuition about the security of mobile systems
- How can you use that knowledge in actual security research?
- Systematically analyze attack surfaces
- Identify and classify vulnerabilities

● Why?
- Improve the security of mobile ecosystems
- Develop new attack methods and corresponding defenses
- Find and eliminate malware
- Earn some bug bounties or academic title along the way!

What’s this presentation about?



IAIK

● Security Research Community
- Universities
- Companies

● Device Manufacturers

● Gray markets
- State Actors

§Military, intelligence services
- Companies

§Selling exploitation kits as products
- Black Hat Hackers

§Ransoms, selling stolen data, …

Who is joining the hunt?



IAIK

● Manufacturers realised they are competing with exploit gray markets

● E.g. Zerodium pays up to 2.5m$
- Sells exploits to governments

Bug Bounty Programs

Source: zerodium.com

https://zerodium.com/program.html


IAIK

● Incentivize white hat hackers to invest their time
- Convince black hat hackers to join the good side

● In theory: Clearly specified scope and payout levels
- E.g. Meta: Social Engineering Attacks are out of scope

● In practice: Companies are still reluctant to pay bounty

Bug Bounty Programs

Source: arstechnica.com

Source: developer.apple.com

https://arstechnica.com/information-technology/2021/09/three-ios-0-days-revealed-by-researcher-frustrated-with-apples-bug-bounty/
https://developer.apple.com/security-bounty/payouts/


IAIK

● Google even offers bug bounties for the most popular apps on Play Store

Play Store Bug Bounty

Source: bughunters.google.com

https://bughunters.google.com/about/rules/5604090422493184/google-play-security-reward-program-rules


IAIK

● Legal to analyse / modify services or products for identifying security bugs?
- Very difficult question!

● General questions
- Which jurisdiction applies?

§User country!
- What services / products / parts are covered?

§Very imprecise formulation of ‘computer program’
§ In general: Sequence of computer instructions and corresponding source code

●Plus: Material that supported the development process
§What about the application package?

Legal aspects (Austria) I am no lawyer!



IAIK

● Strafgesetzbuch / Legal Code
- Compromising a computer system (§118a): 6 months of imprisonment
- Using hacking tools (§126c): 6 months of imprisonment
- Malicious intent is crucial!

§ Stealing sensitive data, preventing operation, …

● Urheberrecht / Copyright law
- Assuming you are entitled to the use of some software:
- Decompilation only allowed for ensuring interoperability (§40e)

§ Exception for matters affecting public safety (§41)
§ Decision by EU Court of Justice: Decompilation also for fixing bugs (Source: lexology.com)

- Modifications without redistribution allowed! (§40d)
- Violation: 6 months of imprisonment

Legal aspects (Austria) I am no lawyer!

https://www.ris.bka.gv.at/eli/bgbl/1974/60/P118a/NOR40173635
https://www.ris.bka.gv.at/eli/bgbl/1974/60/P126c/NOR40239798
https://ris.bka.gv.at/eli/bgbl/1936/111/P40e/NOR12036608
https://www.ris.bka.gv.at/eli/bgbl/1936/111/P41/NOR40041614
https://www.lexology.com/library/detail.aspx?g=f5b1193c-f423-4f96-bca5-03f5145ecf15
https://ris.bka.gv.at/eli/bgbl/1936/111/P40d/NOR12036607


IAIK

● End User License Agreements (EULA)
- Often stricter than copyright laws
- Only legally binding if shown prior to purchase / download 

§ In those cases: Considered part of the purchase contract
Source: linux-magazin.de

● Gesetz gegen unlauteren Wettbewerb (~Trade Secret Law)
- Reverse-engineering for extracting trade secrets is legal (§26d)

● Datenschutzgesetz (Data Protection Law)
- Illegal to extract personal data

● Information on foreign jurisdictions:
- E.g. from Electronic Frontier Foundation

Legal aspects (Austria) I am still no lawyer!

iOS License Agreement

https://www.linux-magazin.de/ausgaben/2007/03/ich-seh-dich-nicht/
https://www.ris.bka.gv.at/eli/bgbl/1984/448/P26d/NOR40212410
https://www.eff.org/issues/coders/reverse-engineering-faq


IAIK

● Obtain permission from the service / product provider

● Join bug bounty programs

Want to be on the safe side in your research?

Source: www.facebook.com/whitehat

https://www.facebook.com/whitehat


IAIK

Systematizations
or

A Graphical Intuition on Security



IAIK

We generally concentrate on protecting or attacking assets

Specifically, their

● Confidentiality: Prevent leakage

● Integrity: Prevent modification

● Availability: Prevent destruction

IT Security



IAIK

● User Data
Passwords, Credentials, Activity Logs, Location, Input data, …

● Application Data
Firmware, Private Keys, Certificates, API Endpoints, Copyrighted material

● Computing Resources
Keep the system / service operational even in face of an attacker

Assets



IAIK

Question: What is a security vulnerability?

Answer: A weakness that allows an attacker to perform actions that
● Were not meant to be possible
● Have negative security repercussions

● Some vulnerabilities are much more important than others
● Various aspects to take into account

Security Vulnerabilities



IAIK

A vulnerability is only a theoretical problem until someone finds an exploit
● Make use of the vulnerability for elevating privileges

Exploit

Privileges Attack

Protection
Vulnerable



IAIK

● Intuitively, we are looking for vulnerabilities that allow exploits that
- Maximize the impact (the privilege gain)
- Minimise our efforts (the complexity)

Exploits

Privileges

Complexity

Attack

Privileges

Complexity

At
ta

ck



IAIK

In principle: Exploiting any vulnerability allows Elevation of Privilege (EOP)
● E.g. Attacker with root execution ➔ TEE OS code execution

More specific terms for common types
● Remote Code Execution (RCE)
● Denial of Service (DOS)
● Information Disclosure (ID)

Types of Exploits



IAIK

● When thinking about a specific exploit, we need to consider the threat model

● “How much can the attacker legitimately do already?”

Threat Model

Privileges



IAIK

The threat model is a list of assumptions about the attacker
● For attacks: Assume an attacker that is not more powerful than X
● For defense: Assume an attacker that is at least as powerful as X

● E.g. “Attacker can install & run a malicious app as root”
- The attacker can get all permissions
- The attacker cannot run code in the TEE

● Only a way to elevate permission beyond threat model qualifies as exploit
- Usually requires some background knowledge on target platform!
- The assumed threat model is essential for describing an exploit!

Threat Model



IAIK

A simplified notion for common threat models

● Remote attacker
- Attacker can lure victim to visit web page, reading email, receive SMS
- Attacker can send a message to WhatsApp, Messenger, etc

● Proximal attacker
- Attacker is physically in the environment of the victim
- Same WiFi network, can send malformed Wifi / Bluetooth packets

● Local attacker
- Attacker can run code on the victim’s device (via installed app)
- Attacker has physical access to the device

Attacker Model

Source: source.android.com

https://source.android.com/security/overview/updates-resources.html


IAIK

The parts of a system that can be reached by some attacker
● Parts that process data from user, file, network, IPC, …

Attack Surface

System Attack Surface

Bu
g 

Pi
ct

ur
e:

 G
oo

gl
e

/ A
pa

ch
e 

2.
0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html


IAIK

Total attack surface is composed from different types of attack surfaces

Attack Surface and Attacker Model

System

Local Attack Surfaces
• File system
• Sockets
• Binder
• …

Physical Attack Surfaces
• Take the device apart
• USB
• ADB
• …

Remote Attack Surfaces
• Network stack
• SMS/MMS
• Browser
• …

Proximal Attack Surfaces
• Wifi
• Bluetooth
• NFC
• …

Bu
g 

Pi
ct

ur
e:

 G
oo

gl
e

/ A
pa

ch
e 

2.
0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html


IAIK

Different attack surface types reachable with different attacker / threat model

Note: Keep attacker model and attack surface separate despite correspondence!

Attack Surfaces and Attacker Model

System

Local Attack Surface Physical A
ttack Surface

Remote Attack Surface
Pr

ox
. A

tt
ac

k 
Su

rf
ac

e

Proximal Attacker

Local Attacker

Remote Attacker

Physical Attacker

Bu
g 

Pi
ct

ur
e:

 G
oo

gl
e

/ A
pa

ch
e 

2.
0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html


IAIK

Specific path an attack takes through the attack surface to exploit a vulnerability

Attack Vector

System
Attacker Model

Attack Vector

Bu
g 

Pi
ct

ur
e:

 G
oo

gl
e

/ A
pa

ch
e 

2.
0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html


IAIK

● Threat Model:
Remote Attacker who knows victim’s phone number

● Attack Surface:
Media parser library - Part of remote attack surface due to automated MMS parsing

● Attack Vector:
Sending a maliciously crafted image file

● Vulnerability:
Buffer overflow due to lack of input sanity checks

● Exploit Type:
Remote Code Execution (RCE)

Example Scenario Cf. Stagefright!



IAIK

Offers a structured answer for “what could possibly go wrong”

Analyse system to identify 
● All assets
● Possible attack surfaces
● Relevant threat models and attack vectors

Multiple uses
● Part of design and implementation phase
● Good starting point for research as well!
● Helps evaluate impact or effectiveness of attacks or defenses

Threat Modelling

Pi
ct

ur
e:

 G
oo

gl
e

/ A
pa

ch
e 

2.
0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html


IAIK

Finding and exploiting
vulnerabilities



IAIK

● Now that we know what vulnerabilities are, how can we find them?
- Requires creativity and perseverence!

1. Get inspiration
2. Decide on attacker & threat model
3. Enumerate reachable attack surfaces
4. Reconnaisance
5. Exploit vulnerability
6. Chain multiple exploits?

Locating Vulnerabilities



IAIK

● Study documentation and implementation
- How is system supposed to work vs. how does it actually behave?

● Study recent research publications
- Conferences, Journals, Blogs, Websites, Twitter

● Study Android Security Bulletin / iOS Release Notes
- Contain references to fixed CVEs

● Keep track of new technological advancements
- Newest iOS / Android versions
- Covid Contact Tracing, …

Getting inspiration



IAIK

● Consider all layers of the system
- User, Apps, System, TEE, Hardware

● Sort all identified attack surfaces to obtain a prioritized list
- Start with lowest requirements in terms of practicality
- High privileges (e.g. running in kernel space)
- Non-memory-safe programming languages (C/C++)
- Complex data formats / state machines
- Hasn’t been in the spotlight before

Enumerating attack surfaces



IAIK

Now that you know where to look, how to actually find a bug?

● Manual Analysis
- Find code that is used, accessible and vulnerable!

● Automated Analysis
- Taint Tracking

§ Find code paths between a specified source and sink
- Symbolic Execution

§What input is needed for getting to specific output / execution point?
- Requires some sort of manual a priori decision

§Specific vulnerability class, target APIs, …

Reconnaisance



IAIK

Idea: Automatically feed random input to target process and provoke crashes

● How to generate data?
- Mutation from some valid input data
- Random mutations ➔ dumb fuzzing
- From some format specification ➔ smart fuzzing

● How to feed data to target?
- Easy for e.g. file viewers or cmd tools, not so much for GUI

● How to identify exploitable bugs?

Fuzzing



IAIK

● Attackers can take different bugs and „chain“ them

● Example of a chain
- RCE bug to go from „remote attacker“ ➔ „code execution in unprivileged app“
- EOP bug in kernel ➔ Root code execution
- EOP bug in a TEE‘s interface only visible to root ➔ TEE code execution

● All iOS jailbreaks are complex exploit chains

● Interesting read: Chainspotting: Building Exploit Chains with Logic Bugs
- Chain of 11 bugs across 6 unique applications
- Net effect: Remote attacker can install and run arbitrary APKs

Source: labs.f-secure.com

Chaining Exploits

https://labs.f-secure.com/archive/chainspotting-building-exploit-chains-with-logic-bugs/


IAIK

Vulnerability Disclosure



IAIK

Now that you’ve discovered a vulnerability, how do your ethically report it?

● Write a report and/or minimal exploit
- Ensure the vulnerability is clearly described and can be reproduced

● Responsible / Coordinated disclosure:
- Report the find to the vendor and give them time to triage the issue
- Only disclose publicly if vulnerability is fixed and/or ~90 days passed

● Many big vendors have at least an information page on reporting bugs
- Find out whom to contact

Vulnerability Disclosure

More information: OWASP: Vulnerability Disclosure Cheat Sheet

https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html


IAIK

1. Triaging
2. Assignment of severity score
3. Working on a fix
4. Fix is committed and tested
5. Patch is released as part of Android Security Bulletin

- Or quarterly update
6. Bug can be tracked via its CVE number

- Common vulnerabilities and exposures
- Assigned by vendor for “serious” vulnerabilities

7. Bug bounty is paid

The story of an Android bug (after submission)



IAIK

Monthly AOSP updates fix reported security vulnerabilities

● Every update comes with a bulletin describing the fixes
- Detailed vulnerability list including CVE and references to fix commits

● Device manufacturers integrate fixes to release security patches
- Android Security Patch Level on device tells about most recent security update

● Device-specific bulletins also available for some manufacturers

Android Security Bulletin

Source: source.android.com

https://source.android.com/security/bulletin


IAIK

Preventing Vulnerabilities
& Exploitation



IAIK

Computer programs are designed and constructed by humans
● They will always contain some flaws

Still, we can
● Use tools to prevent certain kinds of implementation bugs
● Make it hard to exploit vulnerabilities
● Build defenses against known kinds of attacks

Preventing vulnerabilities & exploitation



IAIK

● Write code in memory-safe languages
- Java over C/C++, Kotlin over Java!

● Use compiler-assisted protections
- Integer overflow sanitizations, Java lint checkers, …

● Integrate security testing into CI pipelines
- Automatic fuzzing as part of build process

● Use common sense!
- Read documentation, don’t rely on stackoverflow or self-proclaimed expertsTM

Vulnerability Prevention



IAIK

Techniques that do not remove / fix vulnerabilities, but make exploitation harder

● Stack canaries
- Ensure return pointer hasn’t been overwritten

● Address Space Layout Randomization (ASLR)
- Interesting target functions are at different addresses for every run

● Pointer Authentication (PAC)
- Guard against manipulation of pointers

Preventing Exploitation



IAIK

Traditionally, we only use defenses that restrict what attacker could do without it
● In theory, anything else would be useless, right?

For example: 
● Why use EncryptedSharedPreferences Source: developer.android.com

- Defense against root attackers?
- We could simply hook the ESP reads/writes using root!

● When app’s private folder is already encrypted with File Based Encryption
- Defense against cold-boot attackers

● And app’s private folder is not accessible to other apps
- Defense against local non-root attackers

Defense in Depth

https://developer.android.com/reference/androidx/security/crypto/EncryptedSharedPreferences


IAIK

Implementing redundant defense mechanisms

● Redundancy is still useful as long as different mechanisms are used

● Even if a bug in one mechanism is found, the other keeps protection in place
- It’s less likely to find a bug that affects both mechanisms

● Example: App sandbox is implemented using Linux UID and SELinux policy

Defense in Depth



IAIK

Conclusion



IAIK

In this course, you learned about

● Key and Data Storage on Mobile devices
● iOS Platform Security
● iOS Application Security
● Android Platform Security
● Android Application Security
● Mobile Hardware Security
● Mobile Security Research

All slides are available on the course website
Today’s lecture recording is available from TeachCenter

Mobile Security



IAIK

● Documentation
- Android developer documentation
- Android platform documentation and source code
- Apple Platform Security

● Books
- Jonathan Levin: MacOS and iOS Internals
- Jonathan Levin: Android Internals
- Aditya Gupta: The IoT Hacker's Handbook

Further Resources 1

https://developer.android.com/
https://source.android.com/
https://support.apple.com/en-gb/guide/security/welcome/web


IAIK

● Online Courses
- Mobile Systems and Smartphone Security

§ Includes 21 CTF-style challenges!

● Scientific Publications
- dblp.org computer science bibliography
- Google Scholar
- Conference Proceedings

§Usenix Security, NDSS, ACM CCS, IEEE S&P

● Vulnerability Writeups
- Google Project Zero
- NowSecure

Further Resources 2

https://mobisec.reyammer.io/
https://dblp.org/
https://googleprojectzero.blogspot.com/
https://www.nowsecure.com/mobile-app-breach-news/


IAIK

● Congrats, you’re a mobile security researcher now J

● How can you find interesting new challenges in the domain?
- Contribute in real-world security research
- Deepen your knowledge

● Join IAIK!
- Master theses
- Research and teaching

Send me an email!
florian.draschbacher@iaik.tugraz.at

What’s next?

We’re hiring!

mailto:florian.draschbacher@iaik.tugraz.at


IAIK

● Implementation of a state-of-the-art Juice Jacking attack against iPhone
- Recording screen contents
- Installing MDM profile
- Extracting wifi credentials

● Design and implementation of a novel countermeasure
- Proxy IDBUS communication to only allow charging

● Reverse-engineered and implemented Apple-proprietary protocols
- IDBUS: Low-level Lightning muxing protocol
- iAP: Accessory authentication and HID event injection
- Nero: USB-based protocol used for Lightning-to-HDMI adapter

Recent Master Thesis: Juice-Jacking on iOS

Demo

https://www.youtube.com/watch?v=imAbaG3W6TI


IAIK

● Reproducible Builds for Android Project Mainline modules
- Practical mitigation against targeted attacks

● Automatically identifying ContentProvider or Path Traversal vulnerabilities
- Dynamic analysis testbed

● Code coverage calculation for black-box testing of Android apps
- App instrumentation on rooted Android

● Your idea
- Send me an email to start the discussion!

Current Master Thesis Seeds



IAIK

● 16.06.2022
- Assignment 2 Presentations

● 23.06.2022, 10:00-12:00, HS i1
- Exam option 1

● 30.06.2022, 10:00-12:00, HS i12
- Exam option 2

Outlook

Exam registration open now

Course evaluation open now!


