
IAIK

IAIK

Android Platform Security
Mobile Security 2023

Florian Draschbacher
florian.draschbacher@iaik.tugraz.at
Some slides based on material by Johannes Feichtner



IAIK

● Feedback for assignment 1 soon!

● Start early with assignment 2!

● Any questions? Ask!

Practicals



IAIK

● Android Platform Fundamentals

● Low-level System Security

● Encryption System

● Android OS Security

● Key Management

● Rooting

Outline



IAIK

What?
Bugs in Android‘s libstagefright
and libutils

How?
● Attacker embeds shellcode in 

harmless multimedia file
● Message is downloaded (e.g. via 

MMS)
● Exploit is executed

Result
● Attacker can execute any code

on remote device
Source: https://goo.gl/9fgYSc

https://goo.gl/9fgYSc


IAIKSource: securityweek.com

What?
18 vulnerabilities in baseband code of
Exynos SoC
4 did not require special network access

How?
● Attacker send maliciously crafted

message
● Triggers heap overflow in baseband

code

Result
● Attacker can intercept and 

manipulate cellular communication

https://www.securityweek.com/project-zero-samsung-mobile-chipsets-vulnerable-to-baseband-code-execution-exploits/


IAIK

What?
Attackers could inject code into
Android apps

How?
● Vulnerabilities in Google Play Core 

library
- Inject DEX file through unprotected

service
- Exploit path traversal to enforce

trust into DEX file

Result
● Remote code execution in context

of vulnerable app
● Needs to be patched by app devs

Source: zdnet.com

https://www.zdnet.com/article/8-of-all-google-play-apps-vulnerable-to-old-security-bug/


IAIK

Android Platform
Fundamentals



IAIK

● Open-Source OS developed mainly by Google
- Linux kernel: GNU GPLv2, Rest: Apache 2.0
- Many implementation details can be studied from source code!

● Wide device support
- CPU architectures, hardware features, …
- Used by various device manufacturers
- Proprietary additions, modifications, forks

● Compatibility Test Suite ensures compatibility
- Requirement for access to Google Mobile Services (Play Store, …)

Android

Source: source.android.com

https://source.android.com/compatibility/overview


IAIK

● Most Android devices feature a main CPU and some secure environment
- Secure Key Storage
- Handling biometric unlock (Fingerprint, …)

● ARM TrustZone
- Secure environment runs in a separate execution environment on main CPU

● Secure Element
- Secure environment runs on a dedicated CPU
- E.g. Google Titan M2 in Pixel 6 devices

Android Device Architecture

Sources: security.googleblog.com, security.googleblog.com, developer.android.com

https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html
https://security.googleblog.com/2021/03/announcing-android-ready-se-alliance.html
https://developer.android.com/training/articles/keystore


IAIK

● Linux kernel
- Device drivers
- POSIX interface
- Binder IPC
- Low Memory Killer

● Userspace
- HAL (Hardware Abstraction Layer)
- Android Runtime
- System Services
- Application Framework

Android System Architecture

Pi
ct

ur
e:

 a
nd

ro
id

.c
om

/ A
pa

ch
e 

2.
0

https://developer.android.com/guide/platform


IAIK

Android Security Architecture

Hardware TrustZone

Linux Kernel Secure OS Kernel

Native Libraries
(SSL, Bionic, WebKit, …)

Android Runtime KeyMasterDRM

Application Framework

Application Application

Application Sandbox

User Space

Secure OS Services

Secure Element OS

StrongBox KeyMaster

Optional

Secure Element



IAIK

Android-specific implementation of secure and efficient RPC

● Supports passing objects and file descriptors
● Manages memory life cycle of shared objects
● Kernel passes UID of calling process to callee

- Callee can check permissions of caller
● Proxy and Stub classes can be generated from AIDL

- Android Interface Definition Language

● Intent,  Parcel,  Service,  Context.getSystemService(), ..
- All based on Binder functionality!

Binder
Process 1

Remote Proxy

Marshalling

Process 2

Run Method

Unmarshall

Kernel

Binder Interface

Binder Driver



IAIK

● Android is shipped by many different device manufacturers
- Different CPU architectures, HW peripherals, UI modifications, …

● Releasing OS update for a device used to be time-consuming
- Obtaining updated firmware from peripheral vendors
- Porting modifications to new base

● Situation improved with Project Treble (Android 8.0 / 2017)
- Low-level vendor implementation untouched in Android updates

● Further improvements with Project Mainline (Android 10.0 / 2019)
- System components can be updated through Google Play

Android Fragmentation

Sources: android-developers.googleblog.com, source.android.com

https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://source.android.com/devices/architecture/modular-system


IAIK

● Key system components are organised into self-contained modules
- Signed by Google (while firmware as a whole is still signed by OEM)

● May be updated through Google Play
- ART runtime (module since Android 12)
- SDK Extensions (module since Android 11)
- Connectivity Implementations 

§ (Wifi, BT, UWB, TLS, …)
- Media Codecs
- …

Project Mainline

Sources: source.android.com

https://source.android.com/docs/core/ota/modular-system


IAIK

Android Fragmentation Today
More than 30% of devices run an OS release that is 

older than 4 years!

The situation is probably not that bad though

Android Security Updates
Major manufacturers release monthly security 
updates even after the last Android version 
update

Still, many devices run legacy OS versions
- Particularly cheap devices
- Known vulnerabilities!

Source: Android Studio
⚠

(Aug 2018)



Low-Level
System Security



IAIK

Verified Boot
Chain of Trust from lowest-level bootloader to system partition

1. Device vendor embeds Root of Trust certificate in read-only storage
2. Bootloader checks signature of boot partition against Root of Trust
3. Kernel checks signature of system, vendor (& oem) partitions

How to efficiently check the signature of relatively large partitions?
● Use the Device Mapper verity (dm-verity) feature in Linux kernel
● Transparent real-time integrity checking of block devices

à Prevent persistent rootkits



IAIK

This flow is simplified
● Some devices allow changing Root of Trust
● Additionally: Rollback protection
● dm-verity error may reboot device

Device / bootloader state
● LOCKED/UNLOCKED
● Unlocking effectively disables signature check
● State changes erase all user data

Boot state
● GREEN/YELLOW/ORANGE/RED
● Yellow (Not displayed): Custom Root of Trust
● Only red stops boot

Verified Boot Flow
Start 
boot

Device in 
LOCKED state?

Valid OS found?
(Accept only 

embedded or user-
settable root of trust)

Valid OS found?
(Accept verification 
errors and any root 

of trust)

Boot 
OS

Boot 
OS

Warn about OS not 
being verified

Dismiss after 10 seconds

Cannot boot
Recovery needed

Y N

Y Y

NN

Source: source.android.com

https://source.android.com/security/verifiedboot/boot-flow


IAIK

Idea: Look at block device and storage layer of file system using a hash tree

● Hash values stored in tree of pages
- Only „root hash“ must be trusted to verify rest of tree

● Hash of a page is checked by kernel when it is accessed (always or first time)

● Modification of any 4k-block would
change the „root hash“

● Verify signature of „root hash“ using
public key included on boot partition
à Confirm that device‘s system
partition is unchanged

dm-verity – Insight 

Picture: source.android.com / Apache 2.0
Source: source.android.com

https://source.android.com/security/verifiedboot/dm-verity
https://source.android.com/security/verifiedboot/dm-verity


Encryption 
Systems



IAIK

● Full-Disk Encryption (FDE) 
- Encrypts complete user data partition
- Using key derived from user passcode
- Passcode must be entered before the device can fully boot

● File-Based Encryption (FBE)
- Every file is individually encrypted using different keys
- If hardware support: Additional encryption of file metadata
- Device can boot without requiring passcode (Direct Boot)

§ Limited context until passcode provided

Android Data Encryption Systems
Android 5.0 - 9.0

Android 7.0+



IAIK

Two Areas
● Device Encrypted (DE)

- Immediately available after device turn-on
- „Direct boot“ mode: Receive phone calls, set alarms, …

● Credential Encrypted (CE)
- Available after user entered authentication

credentials

Keys stored in /data/misc/vold/user_keys
à Different subdirectory in ce and de per Android user id

File-Based Encryption

$ ls -R /data/misc/vold/user_keys
+ ce/0/current:

- encrypted_key
- keymaster_key_blob
- salt
- secdiscardable
- stretching
- version

+ de/0:
- encrypted_key
- keymaster_key_blob
- secdiscardable
- stretching
- version      



IAIK

The exact encryption process is highly configurable

Core principles
● Lowest-level file encryption is implemented using fscrypt

- Common Linux kernel API for file encryption across different file systems
- Encryption metadata stored as FS attributes

● File name and contents encrypted using separate keys
- Derived from master key and a file-specific nonce

● Master keys here: DE and CE class keys

File-Based Encryption



IAIK

File-Based Encryption (Simplified)
User Credential

Device-bound 
key 

CE Class Key

File Data Key

File Name Key

Device-bound 
key KDF DE Class Key

KDF

KDF

Device-Encrypted Data

Credential-Encrypted Data

• Class Key Identifier
• File Nonce

File Metadata

File Nonce



IAIK

From Android’s developer documentation:

● CE keys are not evicted until the next reboot!
● Protection is only really effective

- While device is completely shut down
- Between boot and first unlock

● Key difference to how iOS Data Protection works!

File-Based Encryption: Flaw 1

Source: developer.android.com

Credential encrypted storage is only available after the user has successfully unlocked the
device, up until when the user restarts the device again. If the user enables the lock screen
after unlocking the device, this doesn't lock credential encrypted storage.

https://developer.android.com/training/articles/direct-boot


IAIK

● Early implementations: File metadata not encrypted
- File size, creation and access date

● Solution: Metadata Encryption
- Similar scheme as FDE, but only for file system metadata
- Metadata decrypted at boot time
- Wrapped key stored on special partition
- Key protected by TEE, only unlocked if Verified Boot succeeds
- Mandatory in Android 11 and later

File-Based Encryption: Flaw 2

Android 9+

• Class Key Identifier
• File Nonce

File Metadata

Source: source.android.com

https://source.android.com/security/encryption/metadata


IAIK

● Class keys derived inside TEE
- ARM TrustZone
- Device-bound key cannot be extracted

● However, class keys may be processed by the main CPU
- For deriving file-specific keys in kernel
- May be compromised by vulnerable kernel

● Solution: Some devices employ Hardware-Wrapped Keys
- Ephemerally wrap all keys as they pass through CPU
- Requires inline crypto hardware for storage accesses

File-Based Encryption: Flaw 3

Android 11+

Source: source.android.com

File Data 
Key

File Name 
Key

KDF

File Nonce

https://source.android.com/security/encryption/hw-wrapped-keys


IAIK

● Insecure KDF for deriving file keys

𝐷𝐸𝐾! = 𝐴𝐸𝑆"#"$%!
&'( (𝑀𝐾)

● Which can be inversed as
𝑀𝐾 = 𝐴𝐸𝑆"#"$%!

&'( (𝐷𝐸𝐾!)

● Attack: Identify and collect all 𝑛𝑜𝑛𝑐𝑒! and 𝐷𝐸𝐾! from memory dump
- (Assumes Hardware Key Wrapping is not used)
- From dump it’s not obvious which of the 𝑛𝑜𝑛𝑐𝑒! and 𝐷𝐸𝐾! belong together
- Calculate all potential 𝑀𝐾 candidates
- If the same potential 𝑀𝐾 is found for two combinations of 𝑛𝑜𝑛𝑐𝑒! and 𝐷𝐸𝐾!

§Actual 𝑀𝐾 found!

File-Based Encryption: Flaw 4

Source: Tobias Groß et al.: One key to rule them all: Recovering the master key from RAM to break Android’s file-based encryption

File Data 
Key

File Name 
Key

KDF

File Nonce

https://reader.elsevier.com/reader/sd/pii/S266628172100007X?token=34DC7A2DBFB1CCE0C32C3397415C69A9DBB84DE740E22BE81A780BAA48C47F7FD8B21A5D664597D907D0DC34785D2C77&originRegion=eu-west-1&originCreation=20220316084927


IAIK

● In some implementations, the CE key is not cryptographically bound to the 
user credentials

● Problem: If vulnerability in TEE found ➔ Release CE key without credentials
● Solution: Ensure there is a cryptographic relation between user credentials 

and CE Class key (via KDF)

File-Based Encryption: Flaw 5 User 
Credential

Device-
bound key 

KDF
CE Class 

Key

Trusted Execution Environment

Gatekeeper
Checks user credentials

KeyMaster
Releases CE Key

Signal

(Simplified)

Source: qualcomm.com

https://www.qualcomm.com/media/documents/files/file-based-encryption.pdf


Android OS
Security



IAIK

● Kernel-based application sandbox
- DAC (UID, GID-based access control) and MAC (SELinux type enforcement)
- Dedicated, per-application Linux User ID

● Secure IPC (local sockets, Binder, Intents)

● Code signing
- Application packages (APKs)
- OS update packages (OTA packages)
- Project Mainline Modules (APEX)

● Permissions: System and custom (per app)

Android Security Model



IAIK

● Android assigns unique Linux user ID to each application à separate processes
à Kernel-level application sandbox

● Security enforced at process level through standard Linux facilities (UID, GID)

● Sandbox at kernel level
à Security model extends to

native code and OS applications too

● FS permissions as a mechanism to
keep files / folders separate

App Sandbox



IAIK

● Installing new apps
- Creates new directory /data/data/<Package name>/

§ E.g. /data/data/com.whatsapp/

● Accessing other apps‘ directory à needs same UID
- Apps signed with same developer certificate
- And explicitly sharing same UID in AndroidManifest.xml

App Sandbox

$ ls -l /data/data/
drwx------ 4 u0_a97       u0_a97        4096 2017-01-18 14:27 com.android.calendar
drwx------ 6 u0_a120      u0_a120       4096 2017-01-19 12:54 com.android.chrome
...



IAIK

Mandatory Access Control: Deny any access that is not explicitly allowed
Subjects are unable to modify the policy (cf. Discretionary Access Control!)

● Implemented as Linux Security Module: Hooks into kernel syscall code

● Subject: A Linux process
● Object: A system resource (file, socket, …)
● Domain: Label identifying a process or set of processes
● Modes: Permissive (only log violations), Enforcing (disallow violations)
● Policy: Define allowed operations for a subject/domain and specific object

SELinux Security-Enhanced Linux

Source: source.android.com

https://source.android.com/security/selinux


IAIK

Goal: Limit the power of privilege-escalation attacks

Example: If process netd (running as root) is compromised, still do not allow it to access
files only intended for process system_server

● Since Android 5.0: Enforcing Mode
● Harden Android Sandbox
● More than 60 different domains
● Policies improved with every new OS release

SELinux on Android

Source: source.android.com

https://source.android.com/security/selinux


IAIK

● No unlabeled files
● No ptrace
● No device node creation
● No raw I/O
● No mmap zero
● No mac_override
● No setting security properties
● No access to /data/security and

/data/misc/keystore
● No /dev/mem or /dev/kmem access
● No /proc usermode helpers
● No ptrace of init
● No access to generically labeled

/dev/block files
● Restrictions on mounting filesystems

SELinux on Android – Sample Rules
● No execute of files from outside of 

/system
● No access to /data/properties
● No writing to /system or rootfs
● No registering of unknown services
● No entering init domain
● No /sys/kernel/debug read access
● No apps acquiring capabilities
● No raw app access to camera, 

microphone, NFC, radio, etc.
● No app-generic socket access
● No app/proc access to different security 

domains
● No access to GPS files
● Cannot disable SELinux

Meanwhile > 250 Rules



IAIK

● Originally for tablets only, now for phones too (> Android 5.0)

● Users isolated by UID / GID and SELinux

● Separate settings & app data directories
- System directory: /data/system/users/<user ID>/

- App data directory: /data/user/<user ID>/<pkg name>/

● Apps have different UID and install state for each user
- App UID: uid = userId * 10000 + (appId % 10000)

- Shared Apps: Install state in per-user package-restrictions.xml

● External storage isolation

Multi-User support



IAIK

● Primary user (owner)
- Full control over device

● Secondary users
- Restricted profile

§ Share apps with primary user

§ Only on tablets

- Managed profile
§ Separate apps and data but share UI with primary user

§ Managed by Device Policy Client (DPC)

● Guest user
- Temporary, restricted access to device
- Data (session) can be deleted

User Types



IAIK

Key Management



IAIK

● System-managed, secure cryptographic key store
- Hardware-backed: Trusted Execution Environment (ARM TEE) 
- Optionally: Additional Secure Element („StrongBox“)
- Accessible to apps through Java Crypto APIs
- Import keys, perform crypto operations without exposing key material
- Strict separation between keys of different applications

● Android OS defines the KeyMaster HAL interface
- Vendors either provide their own KeyMaster Trusted Application (TA)
- Or adopt the open-source Trusty OS reference implementation

Android KeyStore

Source: source.android.com

https://source.android.com/security/keystore


IAIK

● Developers can limit how a new key may be accessed
- Limit operations: E.g. only use key for signatures
- Require user authentication (fingerprint or PIN)
- Specify key expiration date
- Request delay between accesses

● Some requirements are only checked in software
- Depending on implementation

KeyStore: Access Control

Source: source.android.com

https://source.android.com/security/selinux
https://source.android.com/security/keystore/features
https://source.android.com/security/selinux


IAIK

Goal: Cryptographically proof that a particular public key is hardware-backed
i.e. the corresponding private key can not be extracted

● KeyMaster can generate an X.509 certificate chain for the key
- Also includes information on the device state, key access control, and caller app

● Chain includes device-specific certificate
● Root of chain: Google Hardware Attestation Root certificate

● Best practice:
- Include the attestation certificate chain in communication to backend server
- Only serve requests if chain successfully validated

Key Store: Key Attestation

Source: developer.android.com

https://developer.android.com/training/articles/security-key-attestation


IAIK

● Developers can require Fingerprint Authentication for sensitive operation
- E.g. authorizing banking transactions

● Many app developers implement this insecurely

● Root attacker may modify app to just call the success callback
● Solution: Use the private key unlocked by the successful authentication

- Sign server challenge, check on server, ensures TEE was actually involved

Key Store: Fingerprint Authentication

Source: Antonio Bianchi et al.: Broken Fingers, On the Usage of the Fingerprint API in Android

BiometricPrompt prompt = new BiometricPrompt.Builder(context).build();
prompt.authenticate(null, executor, new BiometricPrompt.AuthenticationCallback() {

@Override
public void onAuthenticationSucceeded(BiometricPrompt.AuthenticationResult result) {

// Authenticated!?
}

});

https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03B-1_Bianchi_paper.pdf


IAIK

● Android-specific trust store for TLS certificates

● Trust anchors (Root CAs)
- Pre-installed („system certificates“)
- User-installed („user certificates“)

● User certificates can be installed, but
- Must be explicitly confirmed by user
- May be rejected by individual apps

Certificates & PKI



IAIK

● Device security policy can be set by admin
- Password / PIN policy
- Device lock / unlock
- Storage encryption
- Camera access

● Needs to be activated by user

● Cannot be directly uninstalled

● May be required to sync account data
- Microsoft Exchange (EAS)
- Google Apps

MDM



IAIK

Rooting



IAIK

Rooting refers to the process of obtaining root permissions – ie. the ability to run 
code (usually a shell) with superuser privileges.

● If bootloader unlockable: 
- Rooting doesn’t require any privilege escalation exploits
- Unlike jailbreaking on iOS
- Simplest form of rooting: Flashing ROM that contains a su application

● Otherwise: Need privilege escalation exploit
- “Soft-rooting”:  Obtain root permission by exploiting vulnerable privileged process
- Only possible on legacy Android versions

§SELinux

Android Rooting



IAIK

● Problem: SELinux prevents any process from obtaining full root permissions
- Even processes that run as root are restricted to a subset of capabilities

● Problem: Verified requires the system partition to be read-only

● Solution: Start superuser daemon before SELinux is fully started
- Set a custom init program that spawns SU daemon
- Then hand over to Android’s original init program

● This can be accomplished by just modifying the boot partition
- System partition is untouched: OTA updates can still be installed

§dm-verity hashes are unaffected
- Example: Magisk

Systemless Root



IAIK

● 05.05.2023
- Application Security on Android I

● 12.05.2022
- Application Security on Android II

Outlook


