
IAIK

IAIK

iOS Application Security
Mobile Security 2023

Florian Draschbacher
florian.draschbacher@iaik.tugraz.at
Some slides based on material by Johannes Feichtner



IAIK

● Thank you for your submissions for assignment 1!
- Detailed feedback in a few days

● Start planning assignment 2 now!

● Any questions?
- Discord channel for anything relevant for others as well
- Send me an email

Assignments



IAIK

● App Internals
- Application Format
- Sandbox
- Code Signing

● App Distribution

● App-Level Security on iOS

● iOS Malware & Jailbreaking

● App Analysis on iOS

Outline

iOS



IAIK

What?
Location data of popular apps leaked to
12 known monetarization firms
● Bluetooth LE Beacon Data
● GPS Longitude and Latitude
● Wi-Fi SSID (Network Name) and 

BSSID (Network MAC Address) 
● Further device data

- Accelerometer, Cell network 
MCC/MNC, Battery Charge % and 
status (Battery or charged via USB)

Problem?
Users agree on sharing their location for
different purposes, e.g. „Location based 
social networking for meeting people 
nearby”Source: https://goo.gl/FjCesH

https://goo.gl/FjCesH


IAIK

Even on a perfectly hardened platform
● Malicious applications may compromise sensitive data
● Insecure applications can open doors to attackers!

iOS platform limits potential attack surface to a minimum
● Code Signing
● Sandboxing

App developers need to
● Submit applications to Apple for review before publishing
● Follow security guidelines

Application Security



IAIK

From Apple’s Developer Documentation:

Application Security

“The most important thing to understand about security is that it is not a bullet point item.
You cannot bolt it on at the end of the development process. You must consciously design
security into your app or service from the very beginning, and make it a conscious part of the
entire process from design through implementation, testing, and release.”

Source: apple.com

https://developer.apple.com/library/archive/documentation/Security/Conceptual/Security_Overview/Introduction/Introduction.html


IAIK

App Internals



IAIK

● Distributed in IPA format (“iOS App Store Package”)
● ZIP archive with all code + resources

App Files

$ unzip SuperPassword.ipa –d mobsecdemo
$ ls -R mobsecdemo/

/Payload/SuperPassword.app/ App itself + static resources
-> SuperPassword Binary executable (ARM-compiled code)
-> Info.plist Bundle ID, version number, app name to display
-> MainWindow.nib Default interface to load when app is started
-> Settings.bundle App-specific preferences for system settings
-> _CodeSignature Signatures of resource files
-> further resources Language files, images, sounds, more GUI layouts (nib)

/iTunesArtwork 512x512 pixel PNG image -> app icon
/iTunesMetadata.plist Developer name + ID, bundle identifier,

copyright information, etc.



IAIK

● The executable binary inside the IPA file is DRM-protected
- Encrypted using Apple’s FairPlay DRM scheme

● At runtime, it is transparenly decrypted by the kernel
- Apple Protect Pager: Transparenly decrypts file when mapping into memory
- FairPlay DRM system is heavily obfuscated and only partly reverse-engineered

● Encryption is carried out by Apple, and only affects App Store apps (*)
- (*) TestFlight (Beta-Test) distribution is also affected

● DRM can be removed by using a Jailbroken device
- Dump the application’s memory at runtime

FairPlay DRM Not to be confused with Code Signing!
(Covered in a few minutes)

Sources: J. Levin: “*OS Internals”, Junzhi Lu et al.: “Play with Fire: Uncover FairPlay DRM and Obfuscation for Fun and Profit” 

http://newosxbook.com/index.php
https://github.com/pwn0rz/fairplay_research/blob/master/slides/bh20-arsenal-fairplay.pdf


IAIK

● Binaries are in Mach-O format (once decrypted)
● Contains segments of one or multiple sections

- Header
§ Architecture
§ Load Commands

● Virtual Memory Layout
● Libraries
● Encryption

- Data
§ Executable code
§ Read / write data
§ Objective C runtime information
§ Code signature

iOS Executables __TEXT Segment
Mach-O Header
Load Commands

__text Section
Executable Code

__DATA Segment
__objc_*

Runtime Info

R-X

RW-

__DATA_CONST
__const

Read-Only Data

R--

__LINKEDIT Segment R--

Dyld Information

Code Signature

Source: J. Levin: “*OS Internals”,

http://newosxbook.com/index.php


IAIK

App Installation
● The application and its data are spread across multiple file system locations

- /private/var/mobile/Containers/Bundle/Application/<APP_UUID>/
§ Extracted IPA contents

- /private/var/mobile/Containers/Data/Application/<CONTAINER_UUID>/
§ User-generated app data. Container UUID changes with every new launch.
§ Subfolder „Library“: Cookies, caches, preferences, configuration files (plist) 
§ Subfolder „tmp“: Temp files for current app launch only (not persisted)
§ Subfolder „Documents“: Visible through iTunes File Sharing and Files app (if enabled)

- /private/var/mobile/Containers/Shared/AppGroup/<APP_UUID>/
§ To share with other apps & extensions of same app group

Source: J. Levin: “*OS Internals”,

http://newosxbook.com/index.php


IAIK

Application
Sandbox

IAIK



IAIK

● Isolate apps from each other and the system
- Restricts resource access and system integration of third-party applications
- App must hold Entitlements for advanced interactions with system
- Apps may request access to some system-wide data by asking user permission

● Limits file system access to app’s container
- /var/mobile/Containers

● Disallows most system calls
- Prevent sandbox escape

Application Sandbox

Source: J. Levin: “*OS Internals”

http://newosxbook.com/index.php


IAIK

● Various hooks scattered throughout syscall implementations in kernel

● Hooks call out to Policy Modules for checking if operation permitted

● Foundation for central iOS security features
- Code Signing Policy Module: AppleMobileFileIntegrity.kext
- Sandbox Policy Module: Sandbox.kext

Recall: Mandatory Access Control (MACF)

Pi
ct

ur
e:

 G
oo

gl
e

/ A
pa

ch
e 

2.
0

Source: J. Levin: “*OS Internals”

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html
http://newosxbook.com/index.php


IAIK

MACF Policy Module that implements the application sandbox

● Can be configured through Profiles
- Compiled from proprietary Sandbox Profile Language (SBPL)
- Specifies what is allowed and what not
- iOS only supports profiles hard-coded into the kernel extension
- Dynamically extended

§Depending on user-granted access (e.g. Media Library)
§Depending on app entitlements

● Profiles enforced in hooks of > 100 system calls

Sandbox.kext

Source: J. Levin: “*OS Internals”

http://newosxbook.com/index.php


IAIK

Code Signing



IAIK

All code executed on iOS must be signed
● Protects the integrity of applications
● Ensures that Apple had a chance to screen developer and/or application
● Signature also contains and protects app entitlements

● Exceptions for some Apple apps
- Holding a special entitlement (discussed later)
- E.g. Javascript JIT in Safari

● Exceptions for apps controlled by a debugger
- Development!

Code Signing

Source: J. Levin: “*OS Internals”,

http://newosxbook.com/index.php


IAIK

● Define degree to which application can integrate and interact with system
● Enforced by kernel and system before sensitive operations
● Granted by Apple to the developer for a specific app

● More than 3000 entitlements defined throughout subsystems on iOS 15
- Only a fraction are officially documented and allowed to normal third-party apps

Entitlements

Sources: J. Levin: “*OS Internals”, newosxbook.com

Source: techspot.comSource: theverge.comSource: 9to5mac.com

http://newosxbook.com/index.php
http://newosxbook.com/ent.jl?osVer=iOS15.2&p=possess
https://www.techspot.com/news/71289-apple-granted-uber-ios-app-entitlement-allowed-record.html
https://www.theverge.com/2020/4/1/21203630/apple-amazon-prime-video-ios-app-store-cut-exempt-program-deal
https://9to5mac.com/2021/06/25/apps-can-request-access-to-more-ram-with-ios-15-entitlement-exceeding-normal-system-memory-limits/


IAIK

● Two parts
- Application Seal: _CodeSignature/CodeResources: Hashes of all resources
- Embedded Signature: Actual code signature

The Embedded Signature
● Stored in __LINKEDIT segment of the MACH-O binary
● Consists of Codesigning Blobs:

- Entitlements Blob: List of app’s entitlements
- Requirements Blob: Specify rules for validating the app signature
- Code Directory Blob: Hash of code pages, App Seal and Codesigning Blobs
- Signature Blob: Signs all these hashes

Code Signatures

Sources: J. Levin: “*OS Internals”, Umang Raghuvanshi: “A Deep Dive into iOS Code Signing”

http://newosxbook.com/index.php
https://blog.umangis.me/a-deep-dive-into-ios-code-signing/


IAIK

Code Signature forms a signed tree of hashes, rooted at Apple CA certificate

Code Signatures

Apple Root CA

Apple iPhone OS Application Signing

Signature Blob

Code Directory

CodeResources

Resource nResource 1

Code Page 1 Code Page n Info.plist…

…

App Store Deployment



IAIK

But how is it implemented?

Before starting a process (in the exec system call)
● Kernel extracts the Code Signature from the binary
● Stores it in special Unified Buffer Cache

On page faults
● Handler checks whether page belongs to a code-signed object
● Requests MACF policies to validate the signature of the page

- AppleMobileFileIntegrity.kext!

Code Signature Enforcement

Source: J. Levin: “*OS Internals”

http://newosxbook.com/index.php


IAIK

● Basic validation of Code Signature format and hashes

● Check CodeDirectory Hash (CDHash) against Trust Cache
- Preinstalled system applications

● Third-party apps: pass to user-space amfid daemon
- Don’t parse complex signature format in kernel

● Also hooks into mmap and mprotect system calls
- Ensure requested memory protections do not allow execution

AppleMobileFileIntegrity.kext (AMFI)

Source: J. Levin: “*OS Internals”

http://newosxbook.com/index.php


IAIK

● Enforces rules from Requirements Blob

● Inspects certificate chain in the Signature Blob
- Complex PKI parsing

● Queries installed Provisioning Profiles
- To complete chain from Developer Certificate to Apple CA

● This is the weakest point in Code Signing Enforcement
- Most jailbreaks manipulate amfid to circumvent code signing

AMFI Userspace Daemon (amfid)

Source: J. Levin: “*OS Internals”

http://newosxbook.com/index.php


IAIK

● A vulnerability in iOS <13.5 enabled apps to gain arbitrary entitlements
● Exploited differences between XML parsers in kernel and user space

Entitlements Vulnerability (“Psychic Paper”)

Source: blog.siguza.com

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<!-- these aren't the droids you're looking for -->
<!---><!-->
<key>platform-application</key>
<true/>
<key>com.apple.private.security.no-container</key>
<true/>
<key>task_for_pid-allow</key>
<true/>
<!-- -->

</dict>
</plist>

User Space (amfid):

No entitlements

Kernel (AMFI.kext):

• task_for_pid-allow: true
• platform-application: true
• com.apple.private.security.no-container: true

https://blog.siguza.net/psychicpaper/


IAIK

App Distribution



IAIK

● Apple tightly restricts the possibilities for installing software on iOS
- Jailbroken devices: Code signing usually disabled

Distribution Options

Distribution Developer Account Review Devices

App Store Paid (99$/yr) Yes All
TestFlight Paid (99$/yr) Yes (if public beta test) Limited
Enterprise Enterprise (*) (299$/yr) No All that have Provisioning Profile

Development / Ad-Hoc Free No Limited, Preregistered

(*) Eligible only companies of more than 100 employees, for in-house distribution of proprietary software

Source: apple.com

https://developer.apple.com/distribute/


IAIK

● Apps that do not go through a review process cannot be signed by Apple
- Developers sign them using a Development Certificate issued by Apple

● How to restrict the power of this development certificate?
- Restrict it to certain application, devices, entitlements

● How?
- Provisioning Profiles

Provisioning Profiles

Source: J. Levin: “*OS Internals”

http://newosxbook.com/index.php


IAIK

● Link between developer certificate and Apple CA
- Must be installed on the device (may be embedded in IPA)
- Only needed for development and enterprise distribution

§App Store or TestFlight distribution: Signed by Apple after review

● Contains:
- Application Identifier: Dev. Certificate can only sign specified app
- Device UDIDs: Profile may only be installed on specified devices
- Entitlement Restrictions: The entitlements a signed app may have at most
- Developer Certificate: The corresponding private part signs the application

● Signed and issued by Apple

Provisioning Profile

Wildcard possible!

Source: J. Levin: “*OS Internals”

http://newosxbook.com/index.php


IAIK

Provisioning Profile

Apple Root CA

Developer 
Certificate

Signature Blob

Code Directory

CodeResources

Resource nResource 1

Code Page 1 Code Page n Info.plist…

…

Provisioning Profile
Development or Enterprise 

Deployment



IAIK

App Store Distribution:

Development Distribution:

Application Signing

Apple issues 
Deployment Certificate Developer signs app

Apple
Submission 

through AppStore 
Connect

Review
Apple signature 

Replaces developer 
signature

App Store

Apple issues 
Development Certificate & 

Provisioning Profile
Developer signs app Install Provisioning 

Certificate on Device Install App on Device

Please note the key pair for the development and deployment certificates must be supplied by the developer in both cases
Signing an app involves using the private key for the development/deployment certificate.



IAIK

Process:
1. Developer uploads app
2. Enter queue for review (on re-upload: back to start)
3. After review

- On reject: Notification with reason
- On success: App release

+ Quality control and nearly no evil apps
- Not possible to fix bugs / security issues quickly (2 expedited reviews / yr)

● Used to be a very opaque process
- Some details leaked during Apple vs Epic lawsuit

App Store Review “On average, 50% of apps are reviewed in 24 hours 
and over 90% are reviewed in 48 hours.”

Source: apple.com

https://developer.apple.com/app-store/review/


IAIK

App Review Process
Multiple steps

● Automated Static Analysis
- Analyse application binary

● Automated Dynamic Analysis
- Detect runtime behavior using random user input

● Manual Reviews
- Manually check for guideline violations

Dynamic Analysis

Manual Analysis

So
ur

ce
: E

pi
c 

vs
. A

pp
le

: T
es

tim
on

y 
of

 T
ry

st
an

 K
os

m
yn

ka

https://app.box.com/s/6b9wmjvr582c95uzma1136exumk6p989/file/808222509408


IAIK

App Review Process: Dynamic Analysis

So
ur

ce
: E

pi
c 

vs
. A

pp
le

: T
es

tim
on

y 
of

 T
ry

st
an

 K
os

m
yn

ka

https://app.box.com/s/6b9wmjvr582c95uzma1136exumk6p989/file/808238598087?sb=/details


IAIK

App Review Process: Static Analysis

So
ur

ce
: E

pi
c 

vs
. A

pp
le

: T
es

tim
on

y 
of

 T
ry

st
an

 K
os

m
yn

ka

https://app.box.com/s/6b9wmjvr582c95uzma1136exumk6p989/file/808238598087?sb=/details


IAIK

● More than 500 people review 100,000 apps per week

● Process is assisted by automation
- E.g. automatically identifying changes in app updates

● Decisions regarding high-profile apps may be overruled by ERB
- Executive Review Board

§Phil Schiller, VP of Marketing at Apple

App Review Process: Manual Analysis

Sources: 9to5mac.com, cnbc.com

https://9to5mac.com/2021/05/07/app-store-review-process-has-over-500-human-experts-less-than-1-of-rejections-are-appealed/
https://www.cnbc.com/2019/06/21/how-apples-app-review-process-for-the-app-store-works.html


IAIK

iOS Privacy Features

Privacy Report

App Privacy Nutrition Labels

● iOS dynamically analyses apps
- During runtime

● Developers are required to
disclose data processing
- Scope
- Purpose

● Developers not always honest
- Xiao et al: Lalaine: Measuring and Characterizing Non-

Compliance of Apple Privacy Labels, Usenix Security 
2023



IAIK

● Several ongoing lawsuits and initiatives
● Breaking Apple’s uncompetitive control over app distribution

● Apple vs Epic
- USA: Apple must allow external IAP payment options

● EU: Digital Markets Act finalized in 2022
- Allow sideloading
- Alternate purchase methods

App Distribution: Future

Sources: macrumors.com, techcrunch.com

https://www.macrumors.com/2022/03/17/eu-sideloading-bill-coming-soon/
https://techcrunch.com/2021/11/09/apple-ordered-to-comply-with-courts-decision-in-epic-games-case-over-in-app-payments/


IAIK

● Apple is expected to allow sideloading in iOS 17
- Will be presented at WWDC in June

● Sideloading will require major changes to iOS
- Reworked security foundations
- What about code signing?
- What about entitlements and private APIs?
- How to ensure app integrity?

App Distribution: Future

Source: macrumors.com

https://www.macrumors.com/2023/04/17/app-sideloading-support-coming-ios-17/


IAIK

App-Level 
Security



IAIK

● Users can grant certain permissions
- Apps show permission dialog at runtime

● Can be revoked in app settings

● Workflow
- First API access: Request user permission
- Further API access:

Refer to saved permission state

Note: Only way to remove internet access for app
à Turn off your WiFi / LTE connection…

iOS Permissions



IAIK

● Apps do not directly (statically) request permissions
- Developers do not have to specify which they want to use
- Depending on use of sensitive APIs

● Example: App wants to access user‘s contacts
- App calls method from CNContactStore class
- Since iOS 10: Apps must present description

how requested data is used
- API access blocked until permission granted / denied

● Sensitive APIs
Contacts, Microphone, Calendar, Camera, Reminders, Photos, Health, Motion Activity & Fitness,
Speech Recognition, Location Services, Bluetooth Sharing, Media Library, Social Media Accounts

iOS Permissions



IAIK

● CommonCrypto
- Low-level C library for symmetric encryption, message digests, KDF, HMAC

● CryptoKit
- High-level Swift library for asymmetric & symmetric crypto, MAC, digests

● Security Framework
- Low-level C library for cryptographically secure random numbers

● Network Framework
- Low-level Swift library for TLS (and TCP, UDP)

● URLSession API
- High-level ObjC/Swift library for HTTPS (and HTTP, FTP, …)

iOS Cryptography APIs
iOS 2+

iOS 13+

iOS 12+

iOS 2+

iOS 7+

So
ur

ce
: d

ev
el

op
er

.a
pp

le
.c

om

https://developer.apple.com/documentation/technologies


IAIK

● Requires that all URLSession requests are made over HTTPS (instead of HTTP)

- And that the connection employs modern TLS standards

● Configurable in Info.plist dictionary
- Specify exceptions

§ For specific domains
§ For specific contents

- Exceptions must be justified for App Review!

App Transport Security (ATS) iOS 9+

Source: developer.apple.com

Certificate Pinning or Self-Signed Certificates still relatively difficult!

https://developer.apple.com/documentation/security/preventing_insecure_network_connections


IAIK

iOS Malware & 
Jailbreaking

IAIK



IAIK

● Advanced protections
- Code Signing
- Sandbox

● Reduced attack surface à stripped down OS
- Lots of useful binaries missing, e.g. no /bin/sh à no „shell“ code L

- Even if shell à no ls, rm, ps, etc.
- With code execution, what could you do?

● Privilege separation
- Most processes run as user „mobile“

§Mobile Safari, Mobile Mail, Springboard, etc
- Many resources require root privileges

Malware?



IAIK

● Maiyadi App Store
- 3rd Party Mac AppStore in China
- Hosts „free“ apps

● Code signatures can be disabled on macOS

Attack scenario
1. macOS infection
2. App installed via cable on iPhone,

signed with enterprise app store cert
(User has to trust Provisioning profile!)

Wirelurker Malware (2014)

Source: paloaltonetworks.com

Source: paloaltonetworks.com

https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/reports/Unit_42/unit42-wirelurker.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/reports/Unit_42/unit42-wirelurker.pdf


IAIK

● Maliciously modified version of the Xcode compiler
● Added backdoors to apps during compilation
● Particularly wide-spread in Chinese applications

● Infected applications could be remotely controlled
- Steal device information
- Hijack opening of URLs

● Affected more than 128 million users
- According to Apple’s estimation

XcodeGhost (2015)

Source: macrumors.com
Source: paloaltonetworks.com

https://www.macrumors.com/2021/05/07/xcodeghost-malware-2015-128-million-ios-users/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/


IAIK

● Spyware exploits zero-click vulnerabilities for essentially jailbreaking device
- Location tracking
- Application monitoring
- Intercepting messages
- Recording calls

● Sold by NSO Group to nation state actors for surveiling suspects
- Also used by some authoritarian governments against political opponents

● Supports very recent iOS versions (up to iOS 16!)

Pegasus (2016-now)

Sources: googleprojectzero.blogspot.com, vice.com, amnesty.org

https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://www.vice.com/en/article/8899nz/nso-group-pitched-phone-hacking-tech-american-police
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-catch-nso-groups-pegasus/


IAIKSource: citizenlab.ca 

https://citizenlab.ca/2023/04/nso-groups-pegasus-spyware-returns-in-2022/


IAIK

All third-party applications on iOS are jailed
● Must be signed by registered developer or Apple
● Restricted to very few syscalls
● Can only access its own data container

We want to use the device to its full potential
● Run arbitrary unsigned apps
● Use all syscalls, access full file system, …
● Example: Run Emulator with JIT

How?
● We sneak out of the jail and open the doors for others to escape

Jailbreak

Source: J. Levin: “*OS Internals”

http://newosxbook.com/index.php


IAIK

● Untethered Jailbreak
- Persists across reboots
- Hardest to achieve

● Tethered Jailbreak
- Requires USB connection to host for rebooting
- Jailbreak is accomplished by manipulating the USB stack of BootROM or iBoot

● Semitethered Jailbreak
- Manually run app on device after reboot
- Bootstrap re-jailbreaking from a normal sandboxed app

Jailbreak Variants

Source: J. Levin: “*OS Internals”

http://newosxbook.com/index.php


IAIK

1. Run code on device
- Install enterprise app or exploit built-in app or exploit Lockdown (iTunes) services

2. Bypass code signing
- Run any code we need

3. Escape Sandbox
- Execute arbitrary syscalls, access full file system
- Exploit unprotected built-in service or allowed kernel interface

4. Elevate privileges
- Obtain root acess to modify system files

5. Kernel patching
- Disable AMFI and Sandbox for other processes

Jailbreaking: General procedure

Source: J. Levin: “*OS Internals”

http://newosxbook.com/index.php


IAIK

● Usually involves exploiting multiple vulnerabilities
- In built-in services or kernel interfaces

● Hindered by code signing!
- Use Return Oriented Programming (ROP) to chain gadgets of existing functions

● Additional challenge posed by Pointer Authentication (Apple A12+)
- Pointers are signed to prevent modifications

From code execution to kernel

Sources: J. Levin: “*OS Internals”, googleprojectzero.blogspot.com

http://newosxbook.com/index.php
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html


IAIK

Kernel Address Space Layout Randomization (KASLR)
Problem: Kernel loaded at different random offsets for each boot
Solution: Find patch targets by scanning kernel memory

- Look for unique instruction sequences or strings

Kernel Patch Protection (KPP)
Problem: Program in protection level EL3 checks for kernel modifications
Solution: Quickly patch and unpatch between checks

- Obtain task port for kernel_task (tfp0)

Kernel Text Readonly Region (KTRR)
Problem: Modern chips catch write attempts to protected kernel pages in HW
Solution: Attack before KTRR is set up (iBoot) or find r/w kernel struct

Kernel Patching

iOS 9+

A10 / iPhone 7+

iOS 6+

So
ur

ce
s:

 J
. L

ev
in

: “*
O

S 
In

te
rn

al
s”

, b
lo

g.
si

gu
za

.n
et

http://newosxbook.com/index.php
https://blog.siguza.net/KTRR/


IAIK

● Full jailbreaks are complex to find and take years of experience
- The more countermeasures, the harder it gets

● For the interested: Have a look at the early modern jailbreaks
- Evasi0n: 

§ iOS 6 Jailbreak (2013)
§The first to deal with KASLR
§Source Code Released in 2017 Source: github.com

§Writeups for User Space Source: www.accuvant.com

§And Kernel Patches Source: blog.azimuthsecurity.com

Full Jailbreak Writeup

https://github.com/OpenJailbreak/evasi0n6
https://web.archive.org/web/20160312083132/http:/www.accuvant.com/blog/evasi0n-jailbreaks-userland-component
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html


IAIK

iOS App Analysis

IAIK



IAIK

à Traditionally two approaches
- Dynamic Analysis: Monitor live file access using jailbroken device
- Static Analysis: Look for file API calls + parameters in binary dump

§ Still needs jailbroken device to obtain decrypted application binary

Challenge?
● iOS apps are compiled down to native code

- Analysis on disassembly, e.g. using Ghidra or Hopper
- Compilation removes high-level information
- Still, the dynamic nature of Objective-C is helpful here!

§ Swift is a little more difficult to reverse!

Application Analysis



IAIK

Case Study: Viber

Source: apps.apple.com

Objective-C Selectors Visible!

https://apps.apple.com/us/app/viber-messenger-chats-calls/id382617920


IAIK

Case Study: Viber

Method calls have to go through objc_msgSend
Facilitates reverse-engineering 



IAIK

● 28.04.2023
- Android Platform Security

● 05.05.2023
- Android Application Security 1

Outlook


