
IAIK

IAIK

iOS Platform Security
Mobile Security 2023

Florian Draschbacher
florian.draschbacher@iaik.tugraz.at
Some slides based on material by Johannes Feichtner



IAIK

● Low-level System Security

● Updates

● Encryption Systems

● Key Management & Passcodes

● Backup

Outline

iOS



IAIK

Source: vice.com

https://www.vice.com/en_us/article/4ag5yj/unlock-apple-iphone-database-for-police


IAIK

iOS Platform
Fundamentals



IAIK

● The device is comprised of a main (ARM) CPU and several coprocessors

● Secure Enclave Processor (SEP)
- Separate processor for cryptographic operations
- Key storage, management, encryption / decryption

§Group ID (GID) key shared between SoC family
§Unique ID (UID) key generated by SEP at factory

- Securely paired to FaceID and TouchID sensors

● Secure Element
- Separate chip for Apple Pay and NFC

iOS Device Architecture

Pi
ct

ur
e:

 G
oo

gl
e

/ A
pa

ch
e 

2.
0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html


IAIK

● XNU Kernel
- Based on Mach microkernel
- Added FreeBSD layer for POSIX compatibility
- IOKit device drivers
- Shared with macOS
- Open source!

● Userspace
- Partly open-source (Darwin)
- Frameworks (e.g. Cocoa Touch)
- Daemons, Services, Programs, Apps

§ launchd
§SpringBoard

iOS

XNU Kernel

BSD Layer
• Networking
• File Systems
• POSIX API
• MACF

Mach Layer
• Scheduling
• Memory
• IPC

Services, Daemons

Frameworks

Applications

H
ex

le
y

Da
rw

in
O

S
M

as
co

tC
op

yr
ig

ht
20

00
by

Jo
n

H
oo

pe
r.

Al
lR

ig
ht

s
Re

se
rv

ed
.



IAIK

● MAC extends Discretionary Access Control (DAC = file permissions)

● Various hooks scattered throughout syscall implementations in kernel

● Hooks call out to Policy Modules for checking if operation permitted

● Foundation for central iOS security features
- Code Signing Policy Module: AppleMobileFileIntegrity.kext
- Sandbox Policy Module: Sandbox.kext

Mandatory Access Control Framework (MACF)

Pi
ct

ur
e:

 G
oo

gl
e

/ A
pa

ch
e 

2.
0

Source: J. Levin: “*OS Internals”

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html
http://newosxbook.com/index.php


Low-Level
System Security



IAIK

Secure Boot Chain („iBoot Chain“)

● „Chain of Trust“
Each step ensures next step is signed by Apple
à Hierarchy reaches up to App Signing

● From LLB/iBoot to Applications à can be updated

Burned into chip
Cannot be modified

SecureROM
a.k.a Boot ROM

Low-Level 
Bootloader (LLB) iBoot Kernel System 

Software Applications

Apple Root CA

Device Firmware 
Upgrade (DFU) 

Mode

On Failure

LLB skipped on A10 SoC and later

SEP and other coprocessors
Verify FW with their own burnt-in Root CA and BootROM

Cert

Sources: J. Levin: “*OS Internals”, apple.com

http://newosxbook.com/index.php
https://support.apple.com/en-za/guide/security/welcome/web


IAIK

Starting with simple boot loader…
● Burnt into hardware: „Hardware Root of Trust“
● Prevent tampering of lowest software levels

● Similar (separate) boot process for coprocessors
- Baseband processor (cellular access)
- Secure Enclave coprocessor
- Started by iBoot

à Error if load / verify next step failed
- Enter DFU (Recovery mode)
- Connect to iTunes and restore factory defaults

Secure Boot Chain



IAIK

Apple prevents them using „System Software Authorization“!

● Signatures alone would enable replay attacks

● Online process
- Device generates nonce („anti-replay value“)
- Sends Exclusive Chip ID (ECID) + nonce to Apple server
- Apple generates signature for (OS image + ECID + nonce)
- Device checks if signature ok, nonce / ECID matches
- If fine: Install software

● Prevent installation of old OS images by revoking old signatures

iOS Downgrades?



IAIK

● A write-only register controls hardware debuggability
- Burned in factory, enforced by SecureROM

● Two flags: (Production/Development), (Secure/Insecure)
- Controls CPU and SEP strictness

● Apple-internal development devices:
- Development: Allow JTAG debug access for CPU
- Insecure: SEP JTAG + Booting unverified OS image

● Leaked “Dev-Fused” iPhones used by hackers
- Available from gray market

● 2020: Apple Security Research Device Program
- Only for high-profile security researchers

Chip Fuse Mode (CPFM)

Source: twitter.com

Source: vice.comSources: J. Levin: “*OS Internals”, vice.com

https://twitter.com/AppleInternalsh/status/1177634002288758785?s=20&t=pBh2MEN0AjvrW3WSlIQ-7A
https://www.vice.com/en/article/gyakgw/the-prototype-dev-fused-iphones-that-hackers-use-to-research-apple-zero-days
http://newosxbook.com/index.php
https://www.vice.com/en/article/gyakgw/the-prototype-dev-fused-iphones-that-hackers-use-to-research-apple-zero-days


IAIK

Kanzi Cable



IAIK

Kong Cable



IAIK

Bonobo Cable



IAIK

● The Checkm8 exploit found in 2019 allows demoting production devices
- iPhone 4S through X
- Only AP fuse may be manipulated

● There is an open-source debug cable!
- Based on Raspberry Pi Pico
- Same functionality as Apple-internal tools

Tamarin Cable

Sources: DEFCON 30: The Hitchhiker’s Guide to iPhone Lightning and JTAG Hacking

https://www.youtube.com/watch?v=7p_njRMqzrY


IAIK

● Firmware is stored on the device in encrypted form
- Prevent analysis and reverse-engineering
- Decrypted during boot, using embedded key and IV

§Wrapped with GID key only available to SEP

à Access to SEP decryption needed for accessing raw firmware
- SecureROM exploit
- SEP exploit
- Dev-Fused device

Firmware Encryption

Sources: J. Levin: “*OS Internals”, theiphonewiki.com

http://newosxbook.com/index.php
https://www.theiphonewiki.com/wiki/Firmware_Keys


IAIK

● Boot chain is an interesting attack target
- Cut the „Chain of Trust“
- Modify subsequently loaded components
- E.g. Remove code signature checks from kernel

● Exploits in LLB, iBoot or kernel
- Software patchfix possible!

● SecureROM exploits
- Can not be updated à deploy new chips
- Checkm8 exploit published in 2019

Jailbreak

Source: twitter.com

https://twitter.com/axi0mX/status/1177542201670168576?s=20&t=yrhgGaVt9VBt3Sr90PhxvQ


IAIK

Goals?
● Store and manage sensitive user data

- Data protection keys
- Biometric information (FaceID, TouchID)

● Separate from main Application Processor (AP ≈ CPU)
- Even privileged iOS exploits can not access key material

● Enforce strict security policies
- Prevent brute-force attacks
- Prevent offline attacks

Secure Enclave



IAIK

Implementation
● Dedicated separate processor core within SoC running its own sepOS
● Transparently encrypted access to external RAM

- Replay-protected authenticated encryption in hardware!
● AP has no access to SEP memory
● Mailbox interface for exposing services to AP

● Core primitives:
- Embedded GID and UID keys
- AES engine hardened against multiple side channel attacks
- Public Key Accelerator for asymmetric cryptography
- True Random Number Generator

Secure Enclave Processor (SEP)

Source: Mandt et al.: “Demystifying the Secure Enclave Processor”, apple.com

https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
https://support.apple.com/en-gb/guide/security/sec59b0b31ff/web


IAIK

● Unlock device without having to enter passcode
- Passcode still required for first unlock after boot

§And 48 hours after last unlock

● Sensor is securely paired to SEP in factory
- Establishes a protected communication channel
- Sensor sends “hash” of fingerprint image to SEP

● Matching fingerprint unlocks access to user data
- Implemented in SEP

TouchID

Source: Ivan Krstic: “Behind the Scenes of iOS Security”

https://www.youtube.com/watch?v=BLGFriOKz6U


IAIK

How does it work?
● Interaction between two programs on SEP

- SKS: Secure Key Service
- SBIO: Secure Biometrics

1. On Code Unlock: SKS derives Master Key (MK) from passcode and UID key
1. SKS encrypts MK with Random Secret (RS) ➔ Encrypted MK (EMK)
2. RS sent to SBIO, MK purged from SKS storage

2. On Touch Unlock:
1. SBIO obtains fingerprint hash from sensor and compares it to registered values
2. If match: Send RS to SKS
3. SKS can now decrypt the wrapped MK from the EMK again

TouchID (similar procedure also for FaceID)

Encrypts user data on device
Details in a few minutes

Source: Ivan Krstic (Apple): “Behind the Scenes of iOS Security”

https://www.youtube.com/watch?v=BLGFriOKz6U


IAIK

● A separate chip sitting on the PCB
- Supplied by Intel or Qualcomm
- Communicates with AP via UART/I2C/USB/SDIO
- Originally used AT commands, now more sophisticated binary protocols

● Manages the cellular communication
- Internet traffic, calls and messages
- Responsible for carrier lock

● Early versions could be exploited from AP
- No exploits from network side are known

Baseband Processor

Sources: J. Levin: “*OS Internals”, theiphonewiki.com, iOS Security Guide

http://newosxbook.com/index.php
https://www.theiphonewiki.com/wiki/Baseband_Device
https://news.ycombinator.com/item?id=26094934


Encryption 
Systems



IAIK

● File system encryption
- Alias: „Full disk encryption“, „Storage encryption“
- Introduced with iOS 3 and iPhone 3GS
- Keys were not dependent on passcode, so protection was very limited

● Data Protection
- Introduced with iOS 4 (2010)
- Encrypts individual files
- Improved in newer version (new Protection classes, KeyChain features)

iOS Data Encryption Systems



IAIK

● Upon file creation, a fresh file encryption key is generated
● The key is wrapped with 1 of 4 class keys of varying protection

- Wrapped key and class stored in file metadata
● Class keys are wrapped with SEP UID key and/or user passcode

Benefits
● Passcode strength alone depends on user choice

- Brute-force attacks (offline = on desoldered NAND chip)
● Combined with UID key that never leaves SEP

- Brute-force attacks have to be carried out on-device!
- Enforce security policy in SEP

§Max attempts, delays, …

Data Protection
256-bit AES

Sources: J. Levin: “*OS Internals”

http://newosxbook.com/index.php


IAIK

Hint: To keep it simple… read from right to left ;)

Data Protection
Change file class? Just rewrap file key!
Change passcode? Just rewrap class key!

Source: iOS Security Guide (Q2 / 2019)

Hardware Key

Passcode Key

Class Key

File Metadata

File Key
File Contents Pi

ct
ur

e:
 G

oo
gl

e
/ A

pa
ch

e 
2.

0

Class

https://github.com/0xmachos/iOS-Security-Guides
https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html


IAIK

Data Protection Classes (a.k.a. „User Keybag Classes“)

Class Class Key Wrapping Class Name

A Passcode + UID NSFileProtectionComplete

Can only be accessed while device is unlocked

B Special Case NSFileProtectionCompleteUnlessOpen

Asymmetric Key Pair: Public key always available, Private key only while unlocked (*)

C Passcode + UID NSFileProtectionCompleteUntilFirstUserAuthentication

Only accessible after user authenticated once (since last boot)

D UID Only NSFileProtectionNone

Always accessible

(*) Exception for file descriptors acquired already while device unlocked

Sources: J. Levin: “*OS Internals”, Ivan Krstic (Apple): “Behind the Scenes of iOS Security”

http://newosxbook.com/index.php
https://www.youtube.com/watch?v=BLGFriOKz6U


IAIK

What happens behind the scenes?

● Passcode-dependant Class keys stored in an encrypted file in device storage
- „System Key Bag“ file

● Upon boot: 
- SEP loads and decrypts Class D key from Flash (using UID key)
- System Key Bag sent to SEP, where the class B public key is unwrapped
- Unwrapped Class Keys are stored in SKS Key Ring in SEP

● Upon unlock:
- Remaining class keys unwrapped using Master Key (derived from passcode and UID key)

● Upon lock:
- Class A and Class B private key removed from SKS Key Ring

Data Protection: Implementation

Source: Ivan Krstic (Apple): “Behind the Scenes of iOS Security”

https://www.youtube.com/watch?v=BLGFriOKz6U


IAIK

● Hardware assists in hiding class keys from AP

● At boot: SEP generates ephemeral key and sends it to the Storage Controller

● File access:
- Kernel fetches wrapped file key from metadata and sends it to SEP
- SEP unwraps key using corresponding class key
- Rewraps it using ephemeral key and returns result to kernel
- Kernel sends rewrapped key to Storage Controller to retrieve Flash content

Data Protection: Storage Controller

Source: Ivan Krstic (Apple): “Behind the Scenes of iOS Security”

Kernel never gets access to any secret of long-term value!
Ephemerally wrapped key is only valid until reboot

https://www.youtube.com/watch?v=BLGFriOKz6U


IAIK

● Every new file gets assigned a protection class by an app (!)
- Handled by the developer!
- User cannot know which apps encrypt their data and which do not

● Consider the scenario
- Getting email with PDF attachment (mail app uses data protection)
- Opening the mail in a PDF reader (not using data protection)

How to find out? à Application Analysis
● Dynamic approach: Monitor live file access using jailbroken device
● Static approach: Look for file API calls + parameters in binary dump

Data Protection – Where is the problem?



IAIK
Since iOS 7 default protection class: „Protected until first user authentication“

Data Protection – In Practice
let fileManager = FileManager.default
fileManager.createDirectory(atPath: folder.path, withIntermediateDirectories: true, 
attributes: [FileAttributeKey.protectionKey: FileProtectionType.complete])
…
fileManager.createFile(atPath: databaseKeyURL.path, contents: nil, 
attributes: [FileAttributeKey.protectionKey: FileProtectionType.complete])

let data = Data(count: count)
data.write(to: fullCachePath, options: [.atomic, .completeFileProtection])



IAIK

A section of the Flash storage that can be completely erased

● Note that the process displayed so far is still simplified!
● Complete file system is also encrypted using key stored in effaceable storage

- “Media Key”
- Similar to legacy Full Disk Encryption (FDE)
- Protects file metadata

● System Key Bag file additionally encrypted with key from effaceable storage
- Yet another key

Effaceable Storage

Source: Ivan Krstic (Apple): “Behind the Scenes of iOS Security”

https://www.youtube.com/watch?v=BLGFriOKz6U


IAIK

File System Encryption – Remote Wipe

From the Apple Platform Security Guide (Q1 / 2021):

à Erase the file system key to avoid further access to any file!
à Remote Wipe does not actually delete the file…

The metadata of all files in the data volume file system are encrypted with a random
volume key, which is created when the operating system is first installed or when the
device is wiped by a user ... When stored, the encrypted file system key is additionally
wrapped by an “effaceable key” ... This key doesn’t provide additional confidentiality of
data. Instead, it’s designed to be quickly erased on demand (by the user with the “Erase
All Content and Settings” option, or by a user or administrator issuing a remote wipe
command from a mobile device management (MDM) solution, Microsoft Exchange ActiveSync, or
iCloud). Erasing the key in this manner renders all files cryptographically inaccessible.



Key Management 
& Passcodes



IAIK

What for? 
Mobile OS needs to handle passwords, login tokens, PINs, certificates, etc

What does it look like?
● 1 SQLite database stored on file system
● Entries can be shared between apps from same developer (app group)
● Access from apps using ordinary API
● Protection classes similar to those for files

Side note: 
Uninstalling an app does not remove KeyChain data!

iOS KeyChain

Sources: J. Levin: “*OS Internals”, Apple Platform Security Guide (Q2 / 2021) 

http://newosxbook.com/index.php
https://support.apple.com/en-gb/guide/security/secb0694df1a/1/web/1


IAIK

Every entry has…
● Access control list (ACL)
● Key wrapped with protection class key, 
● Protection class affiliation
● Attributes describing the entry
● Version number

à Every aspect is encrypted (AES-256 GCM)! 
E.g. also usernames (= attribute), not only passwords!

iOS KeyChain Items
KeyChain

Item

Secret Value

Attributes

Item

Secret Value

Attributes

Per-Row Secret Key

Metadata key

Source: Apple Platform Security Guide (Q2 / 2021) 

https://support.apple.com/en-gb/guide/security/secb0694df1a/1/web/1


IAIK

Every entry has an Access Control List (ACL) specifying

● Accessibility
- When is item readable? 
- Similar to protection class for Data Protection

● Authentication
- What authentication is needed for access?
- Confirm user presence through TouchID, FaceID, passcode
- Ensure TouchID or FaceID enrollment unchanged since entry stored

iOS KeyChain Access Control

Source: Apple Platform Security Guide (Q2 / 2021) 

https://support.apple.com/en-gb/guide/security/secb0694df1a/1/web/1


IAIK

KeyChain Protection Classes

Secret Availability Keychain Data Protection

When unlocked kSecAttrAccessibleWhenUnlocked

Protected by user passcode and SEP UID key

After first unlock kSecAttrAccessibleAfterFirstUnlock

Suitable e.g. for apps that refresh data even while device is locked

Always kSecAttrAccessibleAlways

Only protected by SEP UID key

Passcode-enabled kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly

Same as When unlocked, except unavailable if no passcode configured

Source: Apple Platform Security Guide (Q2 / 2021) 

https://support.apple.com/en-gb/guide/security/secb0694df1a/1/web/1


IAIK

iOS KeyChain: App Access Workflow

Application

SecItem API

securityd

KeyChain file

Encrypted Entry

SEP

Request user auth

Secret

SecretSecret

Via Kernel

Sources: J. Levin: “*OS Internals”, Apple Platform Security Guide (Q2 / 2021) 

http://newosxbook.com/index.php
https://support.apple.com/en-gb/guide/security/secb0694df1a/1/web/1


Backups and
Sync



IAIK

● Local iTunes backups (WiFi or USB cable)
- Encrypted (AES-256 CBC)
- Plain

● iCloud backups
- Sync data to iCloud server
- Access from other Apple devices

Local or Remote Backup

Pi
ct

ur
e:

 G
oo

gl
e

/ A
pa

ch
e 

2.
0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html


IAIK

Keys for file and KeyChain Protection classes are managed in „Keybags“

● System Keybag (= User Keybag)
- Contains wrapped keys for passcode-dependent protection classes
- File encrypted with class D key (protected by SEP UID)
- See Data Protection slides

● Backup Keybag
- Transferred (exported) system keybag in backups

§Non-migratory KeyChain entries remain wrapped with SEP UID key
- Backup encrypted: Key derived from user-specified iTunes password
- Backup plain: KeyChain still protected by UID-derived key

à To migrate backup to new device: encrypt the backup!

Keybags on iOS

Sources: P. Teufl et al: “iOS Encryption Systems”, Apple Platform Security Guide (Q1 / 2021)

https://www.scitepress.org/papers/2013/45262/45262.pdf
https://support.apple.com/en-gb/guide/security/sec6483d5760/web


IAIK

● Escrow Keybag
- Allows iTunes to backup and sync without user passcode!

§Upon connection, iOS device creates escrow keybag and wraps it with fresh key
§Key stays on device classified as Protect Until First User Authentication
§Encrypted escrow keybag stored on computer running iTunes
§ iTunes communicates with device to obtain key when needed

Keybags on iOS Cont‘d

Sources: Apple Platform Security Guide (Q1 / 2021)

https://support.apple.com/en-gb/guide/security/sec6483d5760/web


IAIK

Allows syncing Keychain entries between multiple Apple devices

● Every device generates an iCloud Keychain synchronization key pair
● User approves new device from a device already in this sync cycle
● Apple servers just relay encrypted messages between devices

iCloud Keychain

What if the user loses all their devices?

Source: Ivan Krstic (Apple): “Behind the Scenes of iOS Security”

https://www.youtube.com/watch?v=BLGFriOKz6U


IAIK

● Encrypted using backup („escrow“) key
- Randomly generated key
- Wrapped using a key that is derived from iCSC

à iCSC = iCloud Security Code = User passcode
§Unknown to Apple!

● iCloud Keychain backup encrypted with escrow key
- Encrypted backup + wrapped escrow key sent to Apple
- In case of device loss or new device

à User can recover secrets with iCloud password and iCSC

● Main problem in practice: iCloud account security

iCloud Keychain Backup Only concerns iCloud Keychain backups!
No information available on encryption of full iCloud backups!

Source: Ivan Krstic (Apple): “Behind the Scenes of iOS Security”

https://www.youtube.com/watch?v=BLGFriOKz6U


IAIK

iCloud backend could brute-force iCSC to access escrow key!

Apple‘s solution: Cloud Key Vault
● Enforce policy over escrow key

- Want hard limit on escrow recovery attempts under adversarial cloud
- What if escrow key unwrapping only happens in Hardware Security Modules?

● Cloud Key Vault = HSM running custom secure code
- Key vault runs own certificate authority

§Private key never leaves HSM
- Each iOS device hardcodes key vault CA cert
- Escrow key wrapped with Cloud Key Vault certificate, unwrapping only in HSM

iCloud Keychain Backup „Who watches the watchers?“ :-)

Source: Ivan Krstic (Apple): “Behind the Scenes of iOS Security”

https://www.youtube.com/watch?v=BLGFriOKz6U


IAIK

● Low-level System Security

● Updates

● Encryption Systems

● Key Management & Passcodes

● Backup

iOS Platform Security

iOSQuestions?
Maybe regarding Assignment 1?



IAIK

● 21.04.2023
- iOS Application Security

● 28.04.2023
- Android Platform Security

Outlook


