Logic and Computability

Binary Decision Diagrams (BDDs)

Bettina Könighofer
bettina.koenighofer@lamarr.at

Stefan Pranger
stefan.pranger@iaik.tugraz.at

https://xkcd.com/835/
Motivation – BDDs

- Efficient Representation of Boolean Formulas
 - Small for many practical cases
 - Efficient Manipulation
 - Boolean Operations
Outline

- What are Binary Decision Diagrams (BDDs)?
 - Intuitive Explanation
 - Formal Definition
- From BDDs to Reduced Ordered BDDs (ROBDDs)
- Construct Formula from ROBDD
- Construct ROBDD from Formula
- Pros and Cons of BDDs
Binary Decision Diagram (BDD)

\[M := \{ a = T, b = T, c = T, d = T \} \]

\[M \] is a satisfying assignment

M := \{ a = T, b = T, c = T, d = T \}

M is a satisfying assignment
Binary Decision Diagram (BDD)
BDD with Complimented Edges
BDD with Complimented and dangling Edges
From now on....
Definition of BDDs

- Directed Acyclic Graph

\[(V \cup \Phi \cup \{1\}, E)\]

- Internal Nodes \(v \in V\)
- Function Nodes \(f_i \in \Phi\)
- Terminal Node 1
- Edges \(E\)
 - “Complement” attribute
Definition of BDDs: Internal Node

- Label $l(v) \in \{x_1, ..., x_n\}$
 - Variables of f

- Out-degree: 2
 - Then-Edge T
 - Else-Edge E
 - Marked with (empty) circle
 - Can have complement attribute (full cycle)
Definition of BDDs: Function Node

- Represents Boolean Formula f_i
- In-degree: 0
- Out-degree: 1
 - Edge can have complement attribute
Definition of BDDs: Terminal Node

- Constant Function \textbf{True}
- Out-degree: 0
Outline

- What are Binary Decision Diagrams (BDDs)?
 - Intuitive Explanation
 - Formal Definition

- From BDDs to Reduced Ordered BDDs (ROBDDs)

- Construct Formula from ROBDD
- Construct ROBDD from Formula

- Pros and Cons of BDDs
From BDD to Reduced BDD

1. No duplicate sub-BDDs
From BDD to Reduced BDD

1. No duplicate sub-BDDs
2. No redundant nodes

Reduced BDD
From BDD to Reduced BDD

1. No duplicate sub-BDDs
2. No redundant nodes

Reduced BDD

Redundant

a

b

Not Redundant

a

b

Redundant (special case)

a

Not Redundant (special case)

a
From RBDD to Reduced Ordered BDD (ROBDD)

- Ordering on the variables along any path
 - E.g., $a < b < c < d$

- A ROBDD gives a **canonical** representation of a formula
 - For given variable ordering
 - Meaning:
 - If two formulas are semantically equivalent, they will be represented by the exact same ROBDD
 - Allows Equivalence Checking in constant time
Outline

- What are Binary Decision Diagrams (BDDs)?
 - Intuitive Explanation
 - Formal Definition
- From BDDs to Reduced Ordered BDDs (ROBDDs)
- Construct Formula from ROBDD
- Construct ROBDD from Formula
- Pros and Cons of BDDs
From ROBDD to Formula, Example 1

\[f = (a \land b \land c) \lor (\neg a \land \neg c \land \neg d) \]
From ROBDD to Formula, Example 2

\[f := (\neg x \land y) \lor (\neg x \land \neg y \land \neg z) \lor (x \land z). \]
Outline

- What are Binary Decision Diagrams (BDDs)?
 - Intuitive Explanation
 - Formal Definition
- From BDDs to Reduced Ordered BDDs (ROBDDs)
- Construct Formula from ROBDD
- Construct ROBDD from Formula
- Pros and Cons of BDDs
From Formula to BDD

1. Compute all Cofactors
2. Draw ROBDD from Cofactors
3. Shift Negations Upwards
Boolean formula f w.r.t. a variable x

- **Positive Cofactor** f_x: f with x set to \top
- **Negative Cofactor** $f_{\neg x}$: f with x set to \bot

Example:

- $f = (x \land y) \lor (\neg x \land z)$
 - $f_x = y$
 - $f_{\neg x} = z$
From Formula to BDD – Step 3: Shift Negations Upwards
From Formula to BDD – Example 1

\[f = (a \land b \lor \neg a) \land \neg c \land d \lor c \]

\[f = (a \land b \lor \neg a) \land \neg c \land d \lor c \]
\[f_a = b \land \neg c \land d \lor c \]
\[f_{ab} = \neg c \land d \lor c \]
\[f_{abc} = \top \]
\[f_{ab-c} = d \]
\[f_{ab-cd} = \top \]
\[f_{ab-c-d} = \bot \]
\[f_{a-b} = c \]
\[f_{a-bc} = \top \]
\[f_{a-b-c} = \bot \]
\[f_{\neg a} = \neg c \land d \lor c = f_{ab} \]
From Formula to BDD – Example 2

\[f = (a \land \neg c) \lor (\neg a \land (b \lor (\neg b \land c))) \]

\[f = (a \land \neg c) \lor (\neg a \land (b \lor (\neg b \land c))) \]

\[f_a = \neg c \]

\[f_{ab} = \neg c = f_a \]

\[f_{abc} = \bot \]

\[f_{ab\neg c} = \top \]

\[f_{a\neg b} = \neg c = f_a \]

\[f_{\neg a} = b \lor (\neg b \land c) \]

\[f_{\neg ab} = \top \]

\[f_{\neg a\neg b} = c = \neg f_{ab} \]
From Formula to BDD – Example 2
Outline

- What are Binary Decision Diagrams (BDDs)?
 - Intuitive Explanation
 - Formal Definition
- From BDDs to Reduced Ordered BDDs (ROBDDs)
- Construct Formula from ROBDD
- Construct ROBDD from Formula
- Pros and Cons of BDDs
Advantages / Disadvantages of BDDs

+ **Size-Efficiency**
 - Worst case: exponential
 - Often: BDDs contain a lot of redundancy. Eliminating redundancy results in small BDD

+ **Efficient Operations**
 - e.g. AND, OR: Polynomial time
 - Equivalence Check: Constant time
 - Satisfiability and Validity Check: Constant Time

- **Variable order**
 - Big impact
 - Hard to optimize
Thank You

https://xkcd.com/1033/