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1 Propositional Logic
1.1 Lecture
1.1.1 Declarative Sentences

1. [Lecture] Look at the following statements and tick them if they are true.

� ”Give me the butter.” is a declarative sentence.
� Questions are always declarative sentences.
� Declarative sentences can be true and false at the same time.
� ”My best friend is staying overnight.” is a declarative sentence.

2. [Lecture] Model the following sentences as detailed as possible in propositional logic.

(a) Alice will either take the bike or the tram to get to the concert, not both.
(b) Students will have to take an exam at the end of the semester.
(c) If he is hungry and the fridge is not empty, he cooks for himself.

Solution:

(a) p : Alice will take the bike to get to the concert.
q : Alice will take the tram to get to the concert.

(p ∧ ¬q) ∨ (¬p ∧ q)

(b) p : Students will have to take an exam at the end of the semester.

p

(c) p : He is hungry.
q : The fridge is empty.
r : He cooks for himself.

p ∧ ¬q → r

3. [Lecture] Model the following sentences as detailed as possible in propositional logic.

(a) If the air temperature is above 30°C, then the water temperature is above 20°C and I
am able to go for a swim.

(b) Your kid will be safe if and only if it learns to swim.
(c) What time is it?

Solution:
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(a) p : The air temperature is above 30°C.
q : The water temperature is above 20°C.
r : I am able to go for a swim.

p→ q ∧ r

(b) p : Your kid will be safe.
q : Your kid learns to swim.

p↔ q

(c) This is no declarative sentence.

1.1.2 Syntax of Propositional Logic

4. [Lecture] Give the definition of well-formed formulas in propositional logic.
Solution:

We give the definition of well-formed formulas in propositional logic using a grammar in
Backus-Naur form (BNF) as:

ϕ := < atomic proposition> | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ→ ϕ | ϕ↔ ϕ | (ϕ)

5. [Lecture] Let p, q and r be a atomic propositions. Tick all statements that are true.

� ”¬p ∧ ∨ q” is a propositional formula.
� ”(p ∧ q) ∨ (r → p)” is a propositional formula.
� ”¬p” is a propositional formula.
� ”∨” is a propositional formula.
� ”p” is a propositional formula.

6. [Lecture] Determine whether the string ¬(a∨¬¬b) is a well-formed formula using the parse
tree. Explain your answer. Solution:

¬

∨

a ¬

¬

b

Every leaf is a atomic variable and the other nodes are labeled with logical operators, thus
this is a well-formed formula.
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1.1 Lecture 1 PROPOSITIONAL LOGIC

7. [Lecture] Determine whether the string ¬(a∨¬b¬) is a well-formed formula using the parse
tree. Explain your answer. Solution:

¬

∨

a ¬

b

¬

One leaf is labeled with a logical operator, which is not allowed. Thus this is not a
well-formed formula.

1.1.3 Semantics of Propositional Logic

8. [Lecture] What do we refer to if we talk about the syntax of propositional logic and what do
we understand under the semantics of propositional logic. What is the difference between
syntax and semantic? Solution:

Syntax refers to grammar, while semantics refers to meaning.
Syntax is the set of rules needed to ensure a formula is a well-formed formula; semantics
assigns a truth value to formulas by assigning a truth value to the propositional variables
used in the formula and by assigning the meaning via truth table to the logical operators.

9. [Lecture] Give the definition of a model M of a formula in propositional logic? Solution:

A model M of a propositional formula ϕ is an assignment of each propositional variable
in ϕ to a truth value.

10. [Lecture] Consider the propositional formula ϕ = ¬(¬p ∨ q)→ (p ∧ ¬r).
Find a propositional formula ψ that is syntactically different from ϕ, but semantically equiv-
alent to ϕ. Show the semantic equivalence of ϕ and ψ using truth tables. Solution:
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1.1 Lecture 1 PROPOSITIONAL LOGIC

p q r ¬p ∨ q ¬(¬p ∨ q) p ∧ ¬r ϕ = ¬(¬p ∨ q)→ (p ∧ ¬r)
F F F T F F T
F F T T F F T
F T F T F F T
F T T T F F T
T F F F T T T
T F T F T F F
T T F T F T T
T T T T F F T

ψ = ¬p ∨ q ∨ ¬r

p q r ¬p ¬r ψ = ¬p ∨ q ∨ ¬r
F F F T T T
F F T T F T
F T F T T T
F T T T F T
T F F F T T
T F T F F F
T T F F T T
T T T F F T

11. [Lecture] Consider the propositional formula ϕ = (p∧ q)→ (q∨¬r). Fill out the truth table
for ϕ and its subformulas.
p q r p ∧ q ¬r q ∨ ¬r ϕ = (p ∧ q)→ (q ∨ ¬r)
F F F F T T T
F F T F F F T
F T F F T T T
F T T F F T T
T F F F T T T
T F T F F F T
T T F T T T T
T T T T F T T

12. [Lecture] Given is a formula ϕ = (p ∨ (¬q → r)) ∧ (¬r → p) and a model M = {p = F, q =
T, r = T}. Determine the truth value of ϕ for the given model M using its parse tree.
Solution:

∧

∨

p →

¬

q

r

→

¬

r

p

T

F T

F

T

T

T

F

T

F

T
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1.1 Lecture 1 PROPOSITIONAL LOGIC

1.1.4 Semantic Entailment, Equivalence, Satisfiability and Validity

13. [Lecture] Give the definition of semantic entailment.
Solution:

Let ϕ and ψ be formulas in propositional logic. We say that ϕ |= ψ if and only if every
model M that satisfies ϕ (M |= ϕ) also satisfies ψ (M |= ψ).

14. [Lecture] Give the definition of semantic equivalence.
Solution:

Let ϕ and ψ be formulas in propositional logic. We say that ϕ and ψ are semantically
equivalent if and only if ϕ |= ψ and ψ |= ϕ holds.
In that case we write ϕ ≡ ψ.

15. [Lecture] Give the definition of validity.
Solution:

Let ϕ be a formula of propositional logic. We call ϕ valid if |= ϕ holds, i.e., any possible
model for ϕ is a satisfying model.

16. [Lecture] Give the definition of satisfiability and unsatisfiability.
Solution:

Given a formula ϕ in propositional logic, we say that ϕ is satisfiable if it has a model in
which is evaluates to true. We say that ϕ is unsatisfiable if there is no model under which
ϕ evaluates to true.

17. [Lecture] Consider a formula ϕ in propositional logic. Let the number of propositional vari-
ables in ϕ be n. How many lines does the truth table for ϕ have?
Solution:
2n

18. [Lecture] Consider a truth table for a propositional formula ϕ that has R rows. How many
propositional variables does ϕ have?
Solution:

log2(R)

19. [Lecture] Consider a formula ϕ in propositional logic. In the following list, tick all statements
that are true.

� If ϕ is not satisfiable, ¬ϕ is valid.
� If ϕ is valid, ¬ϕ is not valid.
� If ϕ is valid, ¬ϕ is not satisfiable.
� If ϕ is not valid, ¬ϕ is satisfiable.

20. [Lecture] Given are the truth tables for the propositional logic formulas ϕ and ψ. Determine
whether it holds that ϕ |= ψ, ψ |= ϕ, or neither.
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p q r ϕ ψ
F F F F F
F F T T T
F T F F F
F T T T T
T F F F F
T F T F T
T T F T T
T T T T T

Solution:

It holds that ϕ |= ψ.

21. [Lecture] Consider the propositional formulas ϕ = (p→ q)∨¬r and ψ = (¬r∧p)∨(¬q → ¬r).

(a) Fill out the truth table for ϕ and ψ and their subformulas.
p q r ¬q ¬r p→ q ¬r ∧ p ¬q → ¬r ϕ ψ

F F F T T T F T T T
F F T T F T F F T F
F T F F T T F T T T
F T T F F T F T T T
T F F T T F T T T T
T F T T F F F F F F
T T F F T T T T T T
T T T F F T F T T T

(b) Which of the formulas is satisfiable?
Both of them are satisfiable.

(c) Which of the formulas is valid?
None of them are valid.

(d) Which of the two formulas ϕ and ψ entails the other?
It holds that ψ |= ϕ.

1.1.5 Modelling Example

22. [Lecture] Use propositional logic to solve Sudoku. Rules: A Sudoku grid consists of a 9x9
square, which is partitioned into nine 3x3 squares. The goal of the game is to write one
number from 1 to 9 in each cell in such a way, that each row, each column, and each 3x3-
square contains each number exactly once. Usually several numbers are already given.

6 7 1 5
3 9 8
2 3 4 9
7 4

4 9 8
1 4

6 7 9 3
9 2 5

2 8 7 6
Sudoku
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1.1 Lecture 1 PROPOSITIONAL LOGIC

In order to model SUDOKU using propositional logic, we first need to define the proposi-
tional variables that we want to use in our formula. We define variables xijk for every row
i, for every column j, and for every value k. This encoding yields to 729 variables ranging
from x111 to x999. Using this variables, define the constraints for the rows, the columns, the
3x3-squares and the predefined numbers.

Solution:

• Row-constraints: If a cell in a row has a certain value, then no other cell in that row
can have that value. For each i, and each k we have:

xi1k → ¬xi2k ∧ ¬xi3k ∧ ... ∧ ¬xi9k

xi2k → ¬xi1k ∧ ¬xi2k ∧ ... ∧ ¬xi9k
...

xi9k → ¬xi1k ∧ ¬xi2k ∧ ... ∧ ¬xi8k

• Column-constraints: If a cell in a column has a certain value, then no other cell in
that column can have that value. For each j, and each k we have:

x1jk → ¬x2jk ∧ ¬x3jk ∧ ... ∧ ¬x9jk

x2jk → ¬x1jk ∧ ¬x2jk ∧ ... ∧ ¬x9jk
...

x9jk → ¬x1jk ∧ ¬x2jk ∧ ... ∧ ¬x8jk

• Square-constraints: If a cell in a 3x3 square has a certain value, then no other cell in
that square can have that value. For the first square, we have for each k:

x11k → ¬x12k ∧ ¬x13k ∧ ¬x21k ∧ ¬x22k ∧ ¬x23k ∧ ¬x31k ∧ ¬x32k ∧ ¬x33k

...

x33k → ¬x11k ∧ ¬x12k ∧ ¬x13k ∧ ¬x21k ∧ ¬x22k ∧ ¬x23k ∧ ¬x31k ∧ ¬x32k
The constraints for the remaining squares are similar.

• Predefined-number-constraints: If a cell has a predefined value, we need to set the
corresponding variable to true, e.g., the cell in the fifth row and the fifth column has
the value 9. Therefore we have

x559.

• Cell-constraints: Each cell must contain a number ranging from one to nine. For
each i, and each j we have

xij1 ∨ xij2 ∨ ... ∨ xij9.

On its own, this constraint would allow for a cell to have more than one value.
However, this is not possible due to the other constraints.

To construct the final propositional formula, all constraints need to be connected via
conjunctions. A satisfying assignment for the final formula represents one possible solution
for the Sudoku puzzle. In case that there does not exists a solution, the SAT sovler would
return UNSAT.
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1.2 Self-Assessment 1 PROPOSITIONAL LOGIC

1.2 Self-Assessment

1.2.1 Declarative Sentences

23. [Self-Assessment] Model the following sentences as detailed as possible in propositional logic.

(a) If all students prepare themselves appropriately, everyone will pass the exam.
(b) Graz is the second biggest city of Austria.
(c) If I only had more money!

Solution:

There is no solution available for this question yet.

24. [Self-Assessment] Model the following sentences as detailed as possible in propositional logic.

(a) If I pass the exam, then if I pass it with more than 90 Points I will get the best grade
possible.

(b) Do you like Pizza?
(c) All cats hate dogs and love mice.

Solution:

There is no solution available for this question yet.

25. [Self-Assessment] Model the following sentences as detailed as possible in propositional logic.

(a) Bob will win the lottery, if and only if he gets all the numbers right.
(b) Mozart was born in Salzburg, not in Innsbruck.
(c) If the year is a leap-year, then February will have 29 days.

Solution:

There is no solution available for this question yet.

26. [Self-Assessment] Model the following sentences as detailed as possible in propositional logic.

(a) Either Bob, Alice or neither are going to the lecture today.
(b) Today is Friday, if and only if yesterday was Thursday and tomorrow is not Sunday.
(c) Try to be patient and please be quiet.

Solution:

There is no solution available for this question yet.

27. [Self-Assessment] Model the following sentences as detailed as possible in propositional logic.

(a) If a formula is unsat, it cannot be valid.
(b) It can be proven that there exists an infinite number of primes.
(c) A sentence is called declarative, if and only if it can be assigned a truth value.

Solution:

There is no solution available for this question yet.
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28. [Self-Assessment] Model the following sentences as detailed as possible in propositional logic.

(a) Today it will be either be foggy or it will rain today, but not both.
(b) If and only if everybody comes in a costume to the party, we have a carnival.
(c) No pain, no gain.

Solution:

There is no solution available for this question yet.

29. [Self-Assessment] Model the following sentences as detailed as possible in propositional logic.

(a) If all students pass, the professor will be happy.
(b) Bob is taller than Alice, but shorter than Charlie.
(c) If there is lightning there must be thunder and vice versa.

Solution:

There is no solution available for this question yet.

30. [Self-Assessment] Model the following sentences as detailed as possible in propositional logic.

(a) If the past hurts, you can either run from it, or learn from it.
(b) If life gives you lemons, make lemonade.
(c) A good pizza has salami or tuna on it, but not both at the same time.

Solution:

There is no solution available for this question yet.

1.2.2 Syntax of Propositional Logic

31. [Self-Assessment] Consider a formula ϕ in propositional logic. How is a propositional formula
constructed and of what elements does it consist of?
Solution:

Propositional logic formulas consist of atomic propositions, logical operators, and paren-
theses.
The well-formed formulas of propositional logic are those which we obtain by using the
construction rules below:

ϕ := < atomic proposition> | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ→ ϕ | ϕ↔ ϕ | (ϕ)

32. [Self-Assessment] How can you determine using a parse tree whether a string is a well-formed
formula? Solution:

There is no solution available for this question yet.
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33. [Self-Assessment] Determine whether the string (a ∨ b)→ (¬(x¬)) is a well-formed formula
using the parse tree. Explain your answer.
Solution:

There is no solution available for this question yet.

34. [Self-Assessment] Given the formula ϕ = p∨q∧q → ¬r ↔ ¬p∧s, how should the formula be
interpreted according to the binding priorities? Make brackets to make the correct binding
priorities clear and draw the parse tree for ϕ.
Solution:

There is no solution available for this question yet.

1.2.3 Semantics of Propositional Logic

35. [Self-Assessment] Give the definition of the semantics of propositional logic.
Solution:

The semantics of propositional logic define truth values to propositional variables and
defines the rules for the propositional operators via their corresponding truth tables.

36. [Self-Assessment] Give the definition of a model M of a formula in propositional logic?
Solution:

Satisfying Model: truth assignment such that the formula resolves to true.
Falsifying Model: truth assignment such that the formula resolves to false.
We write: M |= ϕ: The model satisfies the formula.
and M 2 ϕ: The model does not satisfy the formula.

37. [Self-Assessment] What is the difference between a satisfying model and a falsifying model
of a formula in propositional logic? Give a satisfying and a falsifying model for the formula
ϕ = a→ b.
Solution:

There is no solution available for this question yet.

38. [Self-Assessment] Given is a formula ϕ = ((p ∧ ¬q) → (p ∨ ¬r)) ∧ (¬q → ¬r) and a model
M = {p = T, q = F, r = T}. Determine the truth value of ϕ for the given model M using
its parse tree. Solution:

There is no solution available for this question yet.

39. [Self-Assessment] Given is a formula ϕ = ((q → ¬p) ∨ r) → (q ∧ (r → p)). Determine a
satisfying model M1 and a falsifying model M2 using its parse tree. Solution:

There is no solution available for this question yet.

40. [Self-Assessment] Given is a formula ϕ = (¬(r ↔ q) → ¬r) ∧ (¬(r → q) ∨ (p → q)). Deter-
mine a satisfying model M1 and a falsifying model M2 using its parse tree. Solution:

There is no solution available for this question yet.
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1.2.4 Semantic Entailment, Equivalence, Satisfiability and Validity

41. [Self-Assessment] Consider a formula ϕ in propositional logic. In the following list, tick all
statements that are true.

� If ϕ is a tautology, a falsifying model can be found.
� If ϕ is equivalent to ψ, a satisfying model for ϕ always satisfies ψ.
� If ϕ has no satisfying model, it is called a tautology.
� If ϕ semantically entails ψ, a satisfying model for ψ always satisfies ϕ.

42. [Self-Assessment] Why are truth tables, in general, not used to determine equivalence of
large formulas?
Solution:

There is no solution available for this question yet.

43. [Self-Assessment] Consider a formula ϕ in propositional logic. You want to test whether ϕ
is valid. However, you only have a procedure for checking satisfiability. Describe how to use
this procedure to determine whether ϕ is valid.
Solution:

There is no solution available for this question yet.

44. [Self-Assessment] Consider the propositional formulas ϕ = (p∨q)→ r, and ψ = r∨(¬p∧¬q).

(a) Fill out the truth table for ϕ and ψ (and their subformulas).
p q r ¬p ¬q p ∨ q ¬p ∧ ¬q ϕ ψ

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

(b) Which of the formulas is satisfiable?
(c) Which of the formulas is valid?
(d) Is ϕ equivalent to ψ?
(e) Does ϕ semantically entail ψ?
(f) Does ψ semantically entail ϕ?

Solution:

There is no solution available for this question yet.

45. [Self-Assessment] Consider the Boolean functions ϕ1 and ϕ2 over variables p, q, and r. Their
truth table is given below.
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p q r ϕ1 ϕ2 ψ γ

F F F F F
F F T F F
F T F T T
F T T F F
T F F T F
T F T F T
T T F F F
T T T F F

(a) Fill the column for ψ such that ϕ1 entails ψ (i.e., ϕ1 |= ψ), but ϕ2 does not entail ψ
(i.e., ϕ2 2 ψ).

(b) Fill the column for γ such that ϕ1 implies γ (i.e., ϕ1 → γ) as well as ϕ2 implies γ (i.e.,
ϕ2 → γ).

Solution:

There is no solution available for this question yet.

46. [Self-Assessment] Consider the propositional formula ϕ = p→ (q → r).

(a) Fill out the truth table for ϕ and its subformulas.
p q r (q → r) ϕ = p→ (q → r)

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

(b) Is ϕ satisfiable?
(c) Give a formula ψ that is semantically equivalent to ϕ, but does not use the “→”

connective.
(d) How can you check whether ψ is semantically equivalent to ϕ?

Solution:

There is no solution available for this question yet.

47. [Self-Assessment] Consider the propositional formula ϕ = (p→ q) ∧ (q → r) ∧ (¬r ∨ p).

(a) Fill out the truth table for ϕ (and its subformulas).
p q r (p→ q) (q → r) ¬r (¬r ∨ p) ϕ

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T
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(b) Is ϕ satisfiable?
(c) Is ϕ valid?
(d) Give a formula ψ that semantically entails ϕ (i.e., it should be the case that ψ |= ϕ).
(e) How can you check, using a truth table, whether ψ semantically entails ϕ?

Solution:

There is no solution available for this question yet.

48. [Self-Assessment] Consider the propositional formula ϕ = (¬p→ r) ∧ (r → ¬p) ∧ q.

(a) Fill out the truth table for ϕ (and its subformulas).
p q r ¬p (¬p→ r) (r → ¬p) ϕ

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

(b) Is the negation of ϕ satisfiable?
(c) Is the negation of ϕ valid?
(d) Give a formula ψ that semantically entails ϕ (i.e., it should be the case that ψ |= ϕ).
(e) Give a formula ψ such that ϕ semantically entails ψ (i.e., it should be the case that

ϕ |= ψ).

Solution:

There is no solution available for this question yet.

49. [Self-Assessment] Consider the propositional formula ϕ = ((p→ q) ∧ (¬p→ ¬q))→ r.

(a) Fill out the truth table for ϕ and its subformulas.
p q r ¬p ¬q (p→ q) (¬p→ ¬q) (p→ q) ∧ (¬p→ ¬q) ϕ

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

(b) Is ϕ unsatisfiable?
(c) Is the negation of ϕ valid?
(d) Give a formula ψ that is semantically equivalent to ϕ, but does not use the “→”

connective.

Solution:

There is no solution available for this question yet.
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1.2.5 Modelling Example

50. [Self-Assessment] Describe the Latin Square Puzzle using propositional logic.
In the Latin Square Puzzle one has to color cells in an (n×n) grid such that there is exactly
one colored cell in each row and each column. Furthermore, colored cells must not be
adjacent to each other (also not diagonally). Numbers contained in certain cells of the grid
indicate the exact number of colored cells that have to be adjacent (including diagonally) to
it. Numbered cells can contain the numbers 0, 1, 2 and cannot be colored.

2

1

2

1

Example Latin Square Puzzle and its solution

Find propositional formulas which describe the puzzle and which could be used to solve
it. Focus on explaining the concept of the formulas. You do not have to explicitly list all
formulas and you do not have to solve the puzzle.
Hints: Use propositional atoms ci,j , ci,j,0, ci,j,1,ci,j,2 to represent each cell of the (n × n)
game board. If ci,j has the value True, the cell i, j is colored, otherwise it is not colored. If
ci,j,x has the value True, the cell i, j contains the number x.
Express the following constraints:

(a) There is exactly one colored cell in row i.
(b) No colored cells are adjacent to each other.
(c) No numbered cells can be colored.
(d) Numbered cells are adjacent to the indicated amount of colored cells.

Solution:

There is no solution available for this question yet.
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2 Natural deduction for Propositional Logic
2.1 Lecture
For each of the following sequents, either provide a natural deduction proof, or a counter-example
that proves the sequent invalid.

For proofs, clearly indicate which rule, and what assumptions/premises/
intermediate results you are using in each step. Also clearly indicate the scope of any boxes you use.

For counterexamples, give a complete model. Show that the model satisfies the premise(s) of the
sequent in question, but does not satisfy the respective conclusion.

2.1.1 Rules for natural deduction

1. [Lecture] Give the definition of a sequent. Give an example of a sequent and name the parts
the sequent consists of. Solution:

A sequent is an expression of the form

ϕ1, ϕ2,..., ϕn ` ψ.

ϕ1, ϕ2,..., ϕn are called premises. ψ is called the conclusion. The premises entail the
conclusion. This means that for any valid sequence, we can proof that the conclusion
follows from the premises.

2. [Lecture] Look at the following statements and tick them if they are true.

� In a sequent, premises entail a conclusion.
� In a sequent, conclusions entail a premise.
� A sequent is valid, if no proof for it can be found.
� A sequent is valid, if a proof for it can be found.

3. [Lecture] State the AND-introduction rule (∧i). Explain how the rule works. Solution:

ϕ ψ
∧i

ϕ ∧ ψ

If we have two formulas that are known to be true separately, then we can conclude that
the conjunction of the two premises must also be true.

4. [Lecture] p, q, r ` p ∧ (q ∧ r) Solution:

This sequent is provable.

1. p prem.
2. q prem.
3. r prem.
4. q ∧ r ∧i 2,3
5. p ∧ (q ∧ r) ∧i 1,4
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5. [Lecture] p ∧ (q ∧ r) ` q Solution:

This sequent is provable.

1. p ∧ (q ∧ r) prem.
2. q ∧ r ∧e2 1
3. q ∧e1 2

6. [Lecture] p ∧ q,¬q ∧ r ` ¬¬p ∧ ¬¬r Solution:

This sequent is provable.
Solution 1:

1. p ∧ q prem.
2. ¬q ∧ r prem.
3. p ∧e1 1
4. r ∧e2 2
5. ¬¬p ¬¬i 3
6. ¬¬r ¬¬i 4
7. ¬¬p ∧ ¬¬r ∧i 5,6

Solution 2:

1. p ∧ q prem.
2. ¬q ∧ r prem.
3. q ∧e2 1
4. ¬q ∧e1 2
5. ⊥ ¬e 3,4
6. ¬¬p ∧ ¬¬r ⊥e 5

7. [Lecture] ¬¬¬p ∧ q,¬¬r ` r ∧ ¬p ∧ ¬¬q Solution:

This sequent is provable.

1. ¬¬¬p ∧ q prem.
2. ¬¬r prem.
3. ¬¬¬p ∧e1 1
4. q ∧e2 1
5. r ¬¬e 2
6. ¬p ¬¬e 3
7. ¬¬q ¬¬i 4
8. r ∧ ¬p ∧i 5,6
9. r ∧ ¬p ∧ ¬¬q ∧i 8,7

8. [Lecture] p ∧ q, q → ¬¬r ` p ∧ r Solution:
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This sequent is provable.

1. p ∧ q prem.
2. q → ¬¬r prem.
3. q ∧e2 1
4. ¬¬r →e 2,3
5. r ¬¬e 4
6. p ∧e1 1
7. p ∧ r ∧i 6,5

9. [Lecture] Explain the implication-elimination rule (→e). Show how the Modus Tollens rule
derives from the →e rule? Solution:

Implication-Elimination Rule: If we know that ϕ holds and we know that ϕ→ ψ, we can
conclude that ψ holds.

ϕ ϕ→ ψ →e
ψ

Modus Tollens Rule: If it holds that ϕ→ ψ and ¬ψ are true, then we can conclude ¬ϕ.

ϕ→ ψ ¬ψ
MT¬ϕ

We can now give the proof for Modus Tollens Rule: ϕ→ ψ,¬ψ ` ¬ϕ

1. ¬ψ prem.
2. ϕ→ ψ prem.
3. ϕ ass.
4. ψ →e 1,2
5. ⊥ ¬e 1,4
6. ¬ϕ ¬i 3-5

10. [Lecture] ¬p→ q,¬¬¬q ∧ r ` p ∧ ¬¬¬q Solution:

This sequent is provable.

1. ¬p→ q prem.
2. ¬¬¬q ∧ r prem.
3. ¬¬¬q ∧e1 2
4. ¬q ¬¬e 3
5. p MT 1,4
6. p ∧ ¬¬¬q ∧i 5,3

11. [Lecture] Translate the following reasoning into a sequent. If the sequent is valid, proof it
using the rules of natural deduction. If the sequent is not valid, provide a counter example.
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If I press the button, the window opens.
I pressed the button.
Therefore, the window is open.

Solution:

Translation:
p : I press the button.
q : The window is open.

If I press the button, the window opens. p→ q
I pressed the button. p
The window is open. q

Sequent: p→ q, p ` q

This sequent is provable.

1. p→ q prem.
2. p prem.
3. q →e 1,2

12. [Lecture] Explain the concept of boxes in deduction rules and why they are needed. What
does it mean if you make an assumption within a box? Where is this assumption valid?
Solution:

Assumptions assume that within the box, a certain formula holds that can be used to
prove something within the box. The assumption is only valid within the box. Therefore,
any formulas proven within the box are only valid inside the box, because they are proven
under a given assumption that is only valid in the scope of the box.

13. [Lecture] p→ (q ∧ r), q → s ` p→ (s ∧ r) Solution:

This sequent is provable.

1. p→ (q ∧ r) prem.
2. q → s prem.
3. p ass.
4. q ∧ r →e 1,3
5. q ∧e1 4
6. s →e 2,5
7. r ∧e2 4
8. s ∧ r ∧i 6,7
9. p→ (s ∧ r) →i 3-8

14. [Lecture] Why are there two rules for the ∨-introduction rule. Explain, why you are able to
connect any formula to a certain formula ϕ using the connective ∨. Solution:
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ϕ
∨i1

ϕ ∨ ψ
ϕ

∨i2
ψ ∨ ϕ

If we know that ϕ holds, we can derive that ϕ ∨ ψ holds and that ψ ∨ ϕ holds. This is
true for any ψ.

15. [Lecture] p ∧ q, r → s ` (p ∨ (r → s)) ∧ (q ∨ ((t ∨ r)→ u)) Solution:

This sequent is provable.

1. p ∧ q prem.
2. r → s prem.
3. p ∧e1 1
4. p ∨ (r → s) ∨i1 3
5. q ∧e2 1
6. q ∨ ((t ∨ r)→ u) ∨i1 5
7. (p ∨ (r → s)) ∧ (q ∨ ((t ∨ r)→ u)) ∧i 4,6

16. [Lecture] Explain the OR-elimination (∨-e) rule of the natural deduction calculus. In par-
ticular, why does it rule require two boxes? Solution:

From a given formula ϕ∨ψ, we want to proof some other formula χ. We only know that
ϕ or ψ holds. It could be that both of them are true, but it could also be that only ψ is
true, or only ϕ is true. Sine we don’t know which sub-formula is true, we have to give two
separate proofs:

• First box: We assume ϕ is true and need to find a proof for χ.
• Second box: We assume ψ is true and need to find a proof for χ.

Only if we can prove χ in the first and in the second box, then we can conclude that χ
holds also outside of the box.
The ∨e rules says that we can only derive χ from ϕ ∨ ψ if we can derive χ from the
assumption ϕ as well as from the assumption ψ. Formally the rule is written as:

ϕ ∨ ψ

ϕ ass.
...
χ

ψ ass.
...
χ

∨eχ

17. [Lecture] p ∨ ¬¬q,¬p ∧ ¬q ` s ∨ ¬t Solution:
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This sequent is provable.

1. p ∨ ¬¬q prem.
2. ¬p ∧ ¬q prem.
3. p ass.
4. ¬p ∧e1 2
5. ⊥ ¬e 3,4
6. s ∨ ¬t ⊥e 5
7. ¬¬q ass.
8. ¬q ∧e2 2
9. ⊥ ¬e 7,8

10. s ∨ ¬t ⊥e 9
11. s ∨ ¬t ∨e 1, 3-6, 7-10

18. [Lecture] ¬q ∨ ¬p ` ¬(q ∧ p) Solution:

This sequent is provable.

1. ¬q ∨ ¬p prem.
2. q ∧ p ass.
3. ¬q ass.
4. q ∧e1 2
5. ⊥ ¬e 3,4
6. ¬p ass.
7. p ∧e2 2
8. ⊥ ¬e 6,7
9. ⊥ ∨e 1, 3-5, 6-8

10. ¬(q ∧ p) ¬i 2-9

19. [Lecture] ` ((p→ q)→ p)→ p Solution:
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This sequent is provable.

1. (p→ q)→ p ass.
2. ¬p ass.
3. ¬(p→ q) MT 1,2
4. p ass.
5. ⊥ ¬e 2,4
6. q ⊥e 5
7. p→ q →i 4-6
8. ⊥ ¬e 3,7
9. p PBC 2-8

10. ((p→ q)→ p)→ p →i 1-9

20. [Lecture] ¬(q ∧ p) ` ¬q ∨ ¬p Solution:

This sequent is provable.

1. ¬(q ∧ p) prem.
2. q ∨ ¬q LEM
3. p ∨ ¬p LEM
4. q ass.
5. p ass.
6. q ∧ p ∧i 4,5
7. ⊥ ¬e 1,6
8. ¬q ∨ ¬p ⊥e 7
9. ¬p ass.

10. ¬q ∨ ¬p ∨i2 9
11. ¬q ∨ ¬p ∨e 3, 5-8, 9-10
12. ¬q ass.
13. ¬q ∨ ¬p ∨i1 12
14. ¬q ∨ ¬p ∨e 2, 4-11, 12-13

21. [Lecture] Explain in your own words, how to proof a sequent in the natural deduction cal-
culus. What steps do you need to take and which tips can be helpful when solving such
proofs? Solution:
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• Start a proof. At the top of your page write the premises, at the bottom write the
conclusion.

• Work in both directions to fill the gap. Work from the top to the bottom by
working with the premises, and simultaneously work upwards by using the conclusion.

• Look first at the conclusion. If the conclusion is of the form ϕ → ψ, then
immediately apply →i. You still have to fill the gap in the box, but you have an
extra assumption to work with and a simpler conclusion you try to reach. Similar, if
your conclusion is of the form ¬ϕ, apply ¬i to make your life easier.

• Assumption boxes. At any time you can introduce a formula as assumption, by
choosing a proof rule that opens the box. The box defines the scope of the assumption.
By opening a box you introduce an assumption. But don’t forget, you have to close
the box precisely as defined by the applied proof rule.

• What rule should you apply? The rules →i and ¬i make your life easier, apply
them whenever you can. There is no easy recipe for when to use the other rules. The
best way to get the hang of it is doing many proofs by yourself.

2.1.2 Soundness and completeness of natural deduction

22. [Lecture] ”Natural deduction for propositional logic is sound and complete.” Explain in your
own words what this means. Solution:

• Natural deduction for propositional logic is sound. Therefore, any sequent that can
be proven is a correct semantic entailment.
Natural deduction is sound. This means that any sequent ϕ1, ϕ2, . . . ` ψ that is
provable states a correct semantic entailment ϕ1, ϕ2, . . . |= ψ. A correct semantic
entailment tells us that under all models that satisfy ϕi for all i the conclusion ψ
evaluates to true.
In short: Anything that is provable by natural deduction is true with respect to
semantics.

• Natural deduction for propositional logic is complete. Therefore, any sequent that is
a correct semantic entailment can be proven.
Natural deduction is complete. This means that for any statement that is true, i.e.
the statement is a correct semantic entailment, there exists a proof.

23. [Lecture] How can you show that a sequent is not valid? Is this a consequence of soundness
or completeness. Explain your answer. Solution:

In order to show that a sequent is not valid, we provide a counter example, which is a
model that satisfies all premises but falsifies the conclusion.
This is a consequence of soundness. We know from the definition of soundness that

ϕ1, ϕ2,..., ϕn 2 ψ ⇒ ϕ1, ϕ2,..., ϕn 0 ψ

A counterexample is enough to tell us that the left-hand side of this implication is true,
hence the sequent is not valid.

24. [Lecture] p→ q, q → r ` r. Solution:
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This sequent is not provable.
M : p = F, q = F, r = F
M |= p→ q, q → r
M 2 r

25. [Lecture] Translate the following reasoning into a sequent. If the sequent is valid, proof it
using the rules of natural deduction. If the sequent is not valid, provide a counter example.

If I press the button, the window opens.
The window is open.
Therefore, I pressed the button.

Solution:

Translation:
p : Press button.
q : Open window.

If I press the button, the window opens. p→ q
The window is open. q
Therefore, I pressed the button. ` p

sequent: p→ q, q ` p

This sequent is not provable.
M : p = F, q = T
M |= p→ q, q
M 2 p

2.2 Practicals
For each of the following sequents, either provide a natural deduction proof, or a counter-example
that proves the sequent invalid.

For proofs, clearly indicate which rule, and what assumptions/premises/
intermediate results you are using in each step. Also clearly indicate the scope of any boxes you use.

For counterexamples, give a complete model. Show that the model satisfies the premise(s) of
the sequent in question, but does not satisfy the respective conclusion. For each of the following
sequents, either provide a natural deduction proof, or a counter-example that proves the sequent
invalid.

1. [Practicals] [2 Points]

(a) If I am ill, I go to the doctor.
I am ill.
Therefore, I go to the doctor.

(b) If I am ill, I go to the doctor.
I go to the doctor.
Therefore, I am ill.
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(c) (Solve without using the Modus Tollens)
If I am ill, I go to the doctor.
I did not go to the doctor.
Therefore, I am not ill.

Solution:

There is no solution available for this question yet.

2. [Practicals] [2 Points]

(a) (p ∧ q) ∧ ¬r ` q ∨ r
(b) (p ∨ q) ∧ ¬r ` q ∧ r

Solution:

There is no solution available for this question yet.

3. [Practicals] [2 Points]

(a) ` (p→ q)→ p

(b) ` p→ (q → p)

Solution:

There is no solution available for this question yet.

4. [Practicals] [2 Points] ¬(a ∧ b) ∨ ¬c ` ¬(a ∧ b)→ c ∨ a Solution:

There is no solution available for this question yet.

5. [Practicals] [2 Points] p ∧ q ∨ r ` (p ∨ r) ∧ (q ∨ r) Solution:

There is no solution available for this question yet.

6. [Practicals] [2 Points] ¬¬x→ ¬y ∧ z ` z → ¬x ∧ ¬¬y Solution:

There is no solution available for this question yet.

7. [Practicals] [2 Points] ` ¬(p ∧ q) ∨ p Solution:

There is no solution available for this question yet.

8. [Practicals] [2 Points] ¬(a ∨ b) ` ¬a ∧ ¬b Solution:

There is no solution available for this question yet.

9. [Practicals] [2 Points] (s ∨ ¬u)→ t ` (¬s ∧ u) ∨ t Solution:

There is no solution available for this question yet.

Page 24 of 141



2.3 Self Evaluation 2 NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC

10. [Practicals] [2 Points] ¬¬k → (l ∨m),¬¬¬l→ m ` ¬k ∨ (l ∨ ¬¬m) Solution:

There is no solution available for this question yet.

2.3 Self Evaluation
For each of the following sequents, either provide a natural deduction proof, or a counter-example
that proves the sequent invalid.

For proofs, clearly indicate which rule, and what assumptions/premises/
intermediate results you are using in each step. Also clearly indicate the scope of any boxes you use.

For counterexamples, give a complete model. Show that the model satisfies the premise(s) of the
sequent in question, but does not satisfy the respective conclusion.

2.3.1 Rules for natural deduction

25. [Self-Assessment] p ∧ (q ∧ r) ` (p ∧ q) ∧ r Solution:

There is no solution available for this question yet.

26. [Self-Assessment] ¬¬p ∧ ¬¬q, r ∧ s ` (p ∧ r) ∧ ¬¬s Solution:

There is no solution available for this question yet.

27. [Self-Assessment] (p→ q) ∧ (q → r), p ` ¬¬r ∧ ¬p Solution:

There is no solution available for this question yet.

28. [Self-Assessment] (¬p→ q) ∧ (q → r),¬r ` ¬¬¬r ∧ ¬p Solution:

There is no solution available for this question yet.

29. [Self-Assessment] Explain the implication-introduction rule (→i). Solution:

There is no solution available for this question yet.

30. [Self-Assessment] (p→ q)→ r ` ¬r ∧ ¬s→ ¬(p→ q) Solution:

There is no solution available for this question yet.

31. [Self-Assessment] p→ q ` (r → p)→ (r → q) Solution:

There is no solution available for this question yet.

32. [Self-Assessment] p→ q, p ∧ (r ∨ q) ` (q → p)→ ((s ∧ t) ∨ q) ∧ (r ∨ q) Solution:

There is no solution available for this question yet.
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33. [Self-Assessment] p ∨ q,¬p ∨ r ` q ∨ r Solution:

There is no solution available for this question yet.

34. [Self-Assessment] p→ q, p ∧ r ∨ q ` (q → p)→ ((s ∧ t) ∨ q) ∧ (r ∨ q) Solution:

There is no solution available for this question yet.

35. [Self-Assessment] p ∨ q, p→ r,¬s→ ¬q ` r ∨ s Solution:

There is no solution available for this question yet.

36. [Self-Assessment] Look at the following statements and tick them if they are true.

� Given two premises ϕ and ψ, we can conclude that ϕ ∧ ψ holds using ∧-introduction.
� Given two premises ϕ and ψ, we can conclude that ϕ ∨ ψ holds using ∨-introduction.
� Given a premise ϕ ∧ ψ, we can conclude ϕ with ∧-elimination.
� Given a premise ϕ ∨ ψ, we can conclude ϕ with ∨-elimination.

37. [Self-Assessment] ` p→ (q → p) Solution:

There is no solution available for this question yet.

38. [Self-Assessment] Translate the following reasoning into a sequent. If the sequent is valid,
proof it using the rules of natural deduction. If the sequent is not valid, provide a counter
example.

If I press the button, the window opens.
The window is not open.
Therefore, I didn’t press the button.

Solution:

There is no solution available for this question yet.

39. [Self-Assessment] Explain the ⊥-elimination rule of the natural deduction calculus. Why
can you deduce a formula ϕ from something, that is wrong? Solution:

There is no solution available for this question yet.

40. [Self-Assessment] ¬q ∨ p ` q → (p ∨ r) Solution:

There is no solution available for this question yet.

41. [Self-Assessment] p→ (q ∨ r),¬q ∧ ¬r ` ¬p Solution:

There is no solution available for this question yet.

42. [Self-Assessment] Derive the Proof-By-Contradiction-rule from the ¬-introduction rule. So-
lution:

There is no solution available for this question yet.
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43. [Self-Assessment] ¬(q ∨ p) ` ¬q ∧ p Solution:

There is no solution available for this question yet.

44. [Self-Assessment] ` (p→ q) ∨ (q → r) Solution:

There is no solution available for this question yet.

45. [Self-Assessment] (p→ q) ∧ (q → p) ` (p ∧ q) ∨ (¬p ∧ ¬q) Solution:

There is no solution available for this question yet.

46. [Self-Assessment] Look at the following statements and tick them if they are true.

� A sequent always has to have at least one premise to be formally correct.
� When proving a sequent you start your proof with the premise(s) and end it with the

conclusion.
� A natural deduction proof can theoretically have infinite assumption boxes in it.
� A natural deduction rule can only be applied on the bottom-level connective of a for-

mula.

2.3.2 Soundness and completeness of natural deduction

47. [Self-Assessment] Explain what it means that natural deduction for propositional logic is
sound. What is the difference to completeness?

Solution:

There is no solution available for this question yet.

48. [Self-Assessment] Explain what it means that natural deduction for propositional logic is
sound. What is the difference to completeness? Solution:

There is no solution available for this question yet.

49. [Self-Assessment] Look at the following statements and tick them if they are true.

� Any sequent that is a correct semantic entailment can be proven.
� Any sequent that can be proven is a correct semantic entailment.
� If a sequent is not provable, the semantic entailment relation does hold.
� If for a sequent the semantic entailment relation does not hold, it cannot be proven

with natural deduction.

50. [Self-Assessment] Natural deduction for propositional logic is sound and complete. In the
following list, mark each statement with either S, C, B, or N, depending on whether the cor-
responding statement follows from Soundness, Completeness, Both, or Neither. (Note: If a
statement is in itself factually wrong, or has nothing to do with soundness and completeness,
mark it N, since it follows from neither soundness nor completeness.)

� There is no correct sequent for which there is no proof.
� Every sequent has a proof.
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� If all models that satisfy the premise(s) of a given sequent also satisfy the conclusion
of the sequent, there exists a proof for the sequent.

� A sequent has a proof if and only if it is semantically correct.
� An incorrect sequent does not have a proof.
� Every propositional formula is either valid or not valid.
� If a model satisfies the premise(s) of a given sequent, but does not satisfy the conclusion

of the sequent, it is not possible to construct a proof for the sequent.

51. [Self-Assessment] Natural deduction for propositional logic is sound and complete. In the
following list, mark each statement with either S, C, B, or N, depending on whether the cor-
responding statement follows from Soundness, Completeness, Both, or Neither. (Note: If a
statement is in itself factually wrong, or has nothing to do with soundness and completeness,
mark it N, since it follows from neither soundness nor completeness.)

� A sequent has a proof if and only if it is semantically correct.
� If a model satisfies the premise(s) of a given sequent, but does not satisfy the conclusion

of the sequent, it is not possible to construct a proof for the sequent.
� There is no correct sequent for which there is no proof.
� Every sequent has a proof.
� An incorrect sequent does not have a proof.
� Every propositional formula is either valid or not valid.
� If all models that satisfy the premise(s) of a given sequent also satisfy the conclusion

of the sequent, there exists a proof for the sequent.

52. [Self-Assessment] Given an invalid sequent, how do you prove its invalidity? Solution:

There is no solution available for this question yet.

53. [Self-Assessment] ¬(p ∨ ¬q) ` p Solution:

There is no solution available for this question yet.

54. [Self-Assessment] p→ q ` ((p ∨ q)→ p) ∧ (p→ (p ∨ q)) Solution:

There is no solution available for this question yet.

55. [Self-Assessment] p ∨ q,¬q ∨ r ` r Solution:

There is no solution available for this question yet.

56. [Self-Assessment] (p ∧ q)→ (¬r ∧ ¬s),¬r ∧ ¬s ` p Solution:

There is no solution available for this question yet.
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3 Combinational Equivalence Checking
3.1 Lecture

3.1.1 Translating a Circuit into a Formula

1. [Lecture] Explain the algorithm of how to decide the equivalence of combinational circuits
via the reduction to satisfiability. Solution:

Let C1 and C2 denote the two combinational circuits. In order to check whether C1 and
C2 are equivalent, one has to perform the following steps:
(a) Encode C1 and C2 into two propositional formulas ϕ1 and ϕ2.
(b) Compute the Conjunctive Normal Form (CNF) of ϕ1 ⊕ ϕ2, using Tseitin encoding;

i.e., CNF (ϕ1 ⊕ ϕ2).
(c) Give the formula CNF (ϕ1 ⊕ ϕ2) to a SAT solver and check for satisfiability.
(d) C1 and C2 are equivalent if and only if CNF (ϕ1 ⊕ ϕ2) is UNSAT.

2. [Lecture] Explain the process of translating a combinational circuit into a propositional
formula. Draw a combinational circuit with 2 or 3 gates and give the corresponding propo-
sitional formula. Solution:

a

b

c

z

AND

OR

y

The inputs are denoted by a, b, and c and the output is denoted by z. We assign temporary
variable names to the inner wires; in this case we use y. Using these variables, we can
create the propositional formula over the inputs and the output.

z = y ∨ c
= (a ∧ b) ∨ c

3. [Lecture] Compute the propositional formula of the following circuit.
a

b

c

z

OR

NOT

AND NOT

w

x

y

Solution:

z = ¬y
= ¬(w ∧ x)
= ¬((a ∨ b) ∧ x)
= ¬((a ∨ b) ∧ ¬c)
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3.1.2 Relations between Satisfiability, Validity, Equivalence and Semantic En-
tailment

4. [Lecture] Explain the duality of satisfiability and validity and additional provide examples
that show the duality. Solution:

A formula ϕ is valid, if and only if, ¬ϕ is not satisfiable.
Consider the formula ϕ = (x ∨ ¬x). This formula is valid, i.e., all rows in the truth table
would evaluate to true. The negation of ϕ is the following: ¬ϕ = ¬(x ∨ ¬x) = ¬x ∧ x,
which is not satisfiable, i.e., all rows the truth table would evaluate to false.
A formula ϕ is satisfiable, if and only if, ¬ϕ is not valid.
If ϕ is satisfiable, there is at least one model that makes the formula true. If we negate the
formula, these models make the negated formula false, and therefore, the negated formula
cannot be valid. Consider the formula ϕ = (x ∨ y). There is at least one model that
makes the formula true, e.g. M := x = T, y = T . The negation of ϕ is the following:
¬ϕ = ¬(x ∨ y) = ¬x ∧ ¬y. Under the same model M as before, ¬ϕ evaluates to false. So
the negated formula is not valid.

5. [Lecture] How can you check whether it is true that ϕ |= ψ using a decision procedure for
(a) satisfiability or (b) validity? Solution:

(a) Decide entailment using satisfiability. The question whether ϕ � ψ can be
decided by checking ϕ ∧ ¬ψ not satisfiable.

(b) Decide entailment using validity. The question whether ϕ � ψ can be decided
by checking ϕ→ ψ is valid.

3.1.3 Normal Forms

6. [Lecture] Explain the following terms and give examples: (a) literal, (b) cube, and (c) clause.
Solution:

Let ϕ be a propositional formula defined over Boolean variables x1, ..., xn.

• A literal is one of the variables xi or the negation of a variable, e.g., x1.
• A clause is a disjunction of literals, e.g., x1 ∨ x2.
• A cube is a conjunction of literals, e.g., x1 ∧ x2.

7. [Lecture] Given the formula ϕ = (q → p)∧(r∨¬p). Compute its representation in Disjunctive
Normal Form (DNF) using a truth table.

Solution:
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p q r ¬p r ∨ ¬p q → p ϕ

F F F T T T T
F F T T T T T
F T F T T F F
F T T T T F F
T F F F F T F
T F T F T T T
T T F F F T F
T T T F T T T

DNF(ϕ) =(¬p ∧ ¬q ∧ ¬r)
∨(¬p ∧ ¬q ∧ r)
∨(p ∧ ¬q ∧ r)
∨(p ∧ q ∧ r)

8. [Lecture] Given the formula ϕ = (q → p)∧ (r∨¬p). Compute its representation in Conjunc-
tive Normal Form (CNF) using a truth table. Solution:

p q r ¬p r ∨ ¬p q → p ϕ

F F F T T T T
F F T T T T T
F T F T T F F
F T T T T F F
T F F F F T F
T F T F T T T
T T F F F T F
T T T F T T T

CNF(ϕ) =(p ∨ ¬q ∨ r)
∧(p ∨ ¬q ∨ ¬r)
∧(¬p ∨ q ∨ r)
∧(¬p ∨ ¬q ∨ r)

3.1.4 Tseitin Encoding

We list the Tseitin-rewriting rules to be applied for the following examples.

χ↔ (ϕ ∨ ψ) ⇔ (¬ϕ ∨ χ) ∧ (¬ψ ∨ χ) ∧ (¬χ ∨ ϕ ∨ ψ) (1)
χ↔ (ϕ ∧ ψ) ⇔ (¬χ ∨ ϕ) ∧ (¬χ ∨ ψ) ∧ (¬ϕ ∨ ¬ψ ∨ χ) (2)

χ↔ ¬ϕ ⇔ (¬χ ∨ ¬ϕ) ∧ (ϕ ∨ χ) (3)

9. [Lecture] What is the advantage of applying Tseitin encoding to obtain a CNF, especially
compared to using truth tables? Solution:
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Given an original formula ϕ. The equisatisfiable formula in CNF after Tseitin encoding –
CNF (ϕ) – is linear in the size of ϕ, since the number of variables and clauses introduced
by Tseitin encoding is linear in the size of ϕ. Using a truth table could result in an
exponential blowup when constructing a CNF.

10. [Lecture] Derive a Rewrite-Rule for an implication node, i.e., what clauses are introduced
by the node x↔ (p→ q)? Solution:

x↔ (p→ q)⇔ x↔ (p→ q)

⇔ (x→ (p→ q)) ∧ ((p→ q)→ x)

⇔ (x→ (¬p ∨ q)) ∧ ((¬p ∨ q)→ x)

⇔ (¬x ∨ (¬p ∨ q)) ∧ (¬(¬p ∨ q) ∨ x)
⇔ (¬x ∨ ¬p ∨ q) ∧ ((¬¬p ∧ ¬q) ∨ x)
⇔ (¬x ∨ ¬p ∨ q) ∧ ((p ∧ ¬q) ∨ x)
⇔ (¬x ∨ ¬p ∨ q) ∧ ((p ∨ x) ∧ (¬q ∨ x))
⇔ (¬x ∨ ¬p ∨ q) ∧ (p ∨ x) ∧ (¬q ∨ x)

11. [Lecture] Explain the concept of equisatisfiability. Given a propositional logic formula ϕ, the
Tseitin algorithm computes an equisatisfiable formula CNF (ϕ) in CNF. Why is this enough
for equivalence checking? Solution:

Two propositional formulas ϕ and ψ are equisatisfiable if and only if either both are
satisfiable or both are unsatisfiable.
When checking whether two formulas ϕ1 and ϕ2 are equivalent we check whether ϕ =
ϕ1⊕ϕ2 is satisfiable. If ϕ is SAT we know that there is a model such that one of the input
formulas evaluated to true, while the other evaluated to false. The equisatisfiable formula
CNF (ϕ) is satisfiable if and only if ϕ is satisfiable and therefore answers our question of
whether the two input formulas are equivalent.

12. [Lecture] Apply Tseitin’s encoding to the following formula: ϕ = ¬(a ∨ ¬b) ∨ (¬a ∧ c). For
each variable you introduce, clearly indicate which subformula of ϕ it represents. Solution:

Page 32 of 141



3.1 Lecture 3 COMBINATIONAL EQUIVALENCE CHECKING

¬ (a ∨ ¬b
x4

)

x3

x1

∨ (¬a
x5

∧c)

x2

xϕ

CNF (ϕ) = xϕ∧
(¬xϕ ∨ x1) ∧ (¬xϕ ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ xϕ)∧
(¬x1 ∨ ¬x3) ∧ (x1 ∨ x3)∧
(¬a ∨ x3) ∧ (¬x4 ∨ x3) ∧ (¬x3 ∨ a ∨ x4)∧
(¬x2 ∨ x5) ∧ (¬x2 ∨ c) ∧ (¬x5 ∨ ¬c ∨ x2)∧
(¬x4 ∨ ¬b) ∧ (x4 ∨ b)∧
(¬x5 ∨ ¬a) ∧ (x5 ∨ a)

3.1.5 CEC Example

13. [Lecture] Check whether ϕ1 = a ∧ ¬b and ϕ2 = ¬(¬a ∨ b) are semantically equivalent using
the reduction to satisfiability. Prepare everything until you have a formula CNF(ϕ), that
you can give to a SAT solver. Solution:

Page 33 of 141



3.2 Self-Assessment 3 COMBINATIONAL EQUIVALENCE CHECKING

• We start by construction ϕ:

ϕ = ϕ1 ⊕ ϕ2

= [ϕ1 ∨ ϕ2] ∧ ¬[ϕ1 ∧ ϕ2] =

= [(a ∧ ¬b) ∨ (¬(¬a ∨ b))] ∧ ¬[(a ∧ ¬b) ∧ (¬(¬a ∨ b))]

[ (
a ∧ ¬b

x10

)
x4

∨
(
¬ (¬a

x11

∨b)

x8

)
x5

]

x1

∧¬
[ (
a ∧ ¬b

x12

)
x6

∨
(
¬ (¬a

x13

∨b)

x9

)
x7

]

x3

x2

xϕ

CNF (ϕ) = xϕ∧
(¬xϕ ∨ x1) ∧ (¬xϕ ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ xϕ)∧
(¬x2 ∨ ¬x3) ∧ (x2 ∨ x3)∧
(¬x4 ∨ x1) ∧ (¬x5 ∨ x1) ∧ (¬x1 ∨ x4 ∨ x5)∧
(¬x6 ∨ x3) ∧ (¬x7 ∨ x3) ∧ (¬x3 ∨ x6 ∨ x7)∧
(¬x4 ∨ a) ∧ (¬x4 ∨ x10) ∧ (¬a ∨ ¬x10 ∨ x4)∧
(¬x5 ∨ ¬x8) ∧ (x5 ∨ x8)∧
(¬x6 ∨ a) ∧ (¬x6 ∨ x12) ∧ (¬a ∨ ¬x12 ∨ x6)∧
(¬x7 ∨ ¬x9) ∧ (x7 ∨ x9)∧
(¬x11 ∨ x8) ∧ (¬b ∨ x8) ∧ (¬x8 ∨ x11 ∨ b)∧
(¬x13 ∨ x9) ∧ (¬b ∨ x9) ∧ (¬x9 ∨ x13 ∨ b)∧
(¬x10 ∨ ¬b) ∧ (x10 ∨ b)∧
(¬x11 ∨ ¬a) ∧ (x11 ∨ a)∧
(¬x12 ∨ ¬b) ∧ (x12 ∨ b)∧
(¬x13 ∨ ¬a) ∧ (x13 ∨ a)

3.2 Self-Assessment

3.2.1 Translating a Circuit into a Formula

14. [Self-Assessment] Compute the propositional formula of the following circuit.

a

b

c

z

NOT

AND

NAND

XOR

w

x

y
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Solution:

There is no solution available for this question yet.

15. [Self-Assessment] Compute the propositional formula of the following circuit.
a

b

c

d

z

NOT

NOT

OR

XOR NOT

AND

OR NOT
r

s

u

t v

w

x

y

Solution:

There is no solution available for this question yet.

3.2.2 Relations between Satisfiability, Validity, Equivalence and Entailment

16. [Self-Assessment] A formula ϕ is valid, if and only if ¬ϕ is not satisfiable. Explain why this
statement holds in your own words. Solution:

There is no solution available for this question yet.

17. [Self-Assessment] Given two propositional logic formulas ϕ and ψ. How can we check whether
ϕ ≡ ψ using a decision procedure for (a) satisfiability, (b) for validity, and (c) for semantic
entailment?

Solution:

There is no solution available for this question yet.

18. [Self-Assessment] Given a propositional logic formula ϕ. How can we check whether ϕ is
valid using a decision procedure for (a) satisfiability and (b) equivalence? Solution:

There is no solution available for this question yet.

19. [Self-Assessment] Given a propositional logic formula ϕ. Tick all statements that are true.

� A formula ϕ is valid, if and only if ¬ϕ is satisfiable.
� A formula ψ is satisfiable, if and only if ¬ϕ is valid.
� A formula ϕ is satisfiable, if and only if ¬ϕ is not valid.
� A formula ϕ is valid, if and only if ¬ϕ is not satisfiable.

20. [Self-Assessment] Given two propositional logic formulas ϕ and ψ. Tick all statements that
are true.

� If ¬ϕ is not satisfiable, ϕ is not valid.
� If > |= ϕ, ϕ is valid.
� If ϕ↔ ψ is valid, ϕ entails ψ.
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� If ϕ→ ψ is valid, both formulas are equivalent.

21. [Self-Assessment] Given two propositional logic formulas ϕ and ψ. Tick all statements that
are true.

� If ϕ ∧ ¬ψ is not satisfiable, ϕ entails ψ.
� If ¬ϕ is not valid, ϕ is satisfiable.
� If ϕ entails ψ and ψ entails ϕ, both formulas are equivalent.
� If ϕ is equivalent to >, ϕ is valid..

Solution:

There is no solution available for this question yet.

3.2.3 Normal Forms

22. [Self-Assessment] Define the Disjunctive Normal Form (DNF) of formulas in propositional
logic. Use the proper terminology and give an example. Solution:

There is no solution available for this question yet.

23. [Self-Assessment] Define the Conjunctive Normal Form (CNF) of formulas in propositional
logic. Use the proper terminology and give an example.

Solution:

There is no solution available for this question yet.

24. [Self-Assessment] Tick all statements that are true.

� A clause is a disjunction of literals.
� A clause is a conjunction of literals.
� A cube is disjunction of literals.
� A cube is a conjunction of literals.

25. [Self-Assessment] Given the formula ϕ with the variables x1, ..., xn. Tick all statements that
are true.

� A literal is a variables xi or its negation.
� A literal forms a formula in conjunctive normal form.
� A literal forms a formula in disjunctive normal form.
� A literal is called positive, if it is the negation of a variable.
� A literal is called negative, if it is the negation of a variable.

26. [Self-Assessment] Look a the following statements and tick all items that conform to a DNF.

� a ∨ b
� A DNF is a conjunction of clauses.
� (a ∨ b) ∧ (¬b ∨ ¬a ∨ c) ∧ ¬c
� (a ∧ b) ∨ (¬b ∧ ¬a ∧ c) ∨ ¬c
� A DNF is a conjunction of disjunctions of literals.
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� b

� a ∧ b ∧ ¬c
� (¬a ∧ b) ∧ (¬a ∧ c)
� A DNF is a disjunction of cubes.
� ¬(a ∧ ¬b) ∧ c
� A DNF is a disjunction of conjunctions of literals.
� a ∧ ¬b

27. [Self-Assessment] Tick each correct ending of the following sentence. ”A Conjunctive Normal
Form is …

� …a conjunction of disjunctions of literals.”
� …a conjunction of clauses.”
� …a formula that consists only of logical AND operations on sub-formulas which only

consist of OR operations on just variables and negations of variables.”

28. [Self-Assessment] SAT solvers usually require input formulas to be in Conjunctive Normal
Form (CNF). In the following list, tick all items that conform to CNF.

� A formula ϕ that consists of a conjunction of clauses c1, c2, . . . , cn.
� A formula ϕ that consists of a disjunction of clauses c1, c2, . . . , cn.
� A formula ϕ that consists of a conjunction of cubes c1, c2, . . . , cn.
� A formula ϕ that consists of a disjunction of cubes c1, c2, . . . , cn.
� A literal l.

29. [Self-Assessment] In the following list, tick all items that conform to the Conjunctive Normal
Form (CNF).

� (a ∧ b ∧ ¬c) ∨ (¬b ∧ ¬c) ∨ (e ∧ ¬f)
� a

� ¬b
� a ∧ ¬b
� a ∨ ¬b
� a ∨ (¬b ∧ c)
� (a ∨ ¬b) ∧ c
� ¬(p ∨ q)
� x ∨ ¬y ∨ z

30. [Self-Assessment] In the following list, tick all items that conform to the Disjunctive Normal
Form (DNF).

� (a ∧ b ∧ ¬c) ∨ (¬b ∧ ¬c) ∨ (e ∧ ¬f)
� (a ∨ b ∨ ¬c) ∧ (¬b ∨ ¬c) ∧ (e ∨ ¬f)
� ¬b
� a ∧ ¬b
� a ∨ ¬b
� a ∨ (¬b ∧ c)
� (a ∨ ¬b) ∧ c
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� ¬(p ∨ q)
� x ∨ ¬y ∨ z

Solution:

There is no solution available for this question yet.

31. [Self-Assessment] Given a formula in propositional logic. Explain how to extract a CNF
representation as well as a DNF representation of ϕ using the truth table from ϕ. Solution:

There is no solution available for this question yet.

32. [Self-Assessment] Given the formula ϕ = (a∧¬b∧¬c)∨ ((¬c→ a)→ b). Use the truth table
of ϕ to compute its representation in (a) CNF and (b) DNF. Solution:

There is no solution available for this question yet.

33. [Self-Assessment] Given the formula ϕ = (q → ¬r) ∧¬(p ∨ q ∨¬r). Use the truth table of ϕ
to compute its representation in (a) CNF and (b) DNF. Solution:

There is no solution available for this question yet.

34. [Self-Assessment] Consider the propositional formula ϕ = (p∨¬q)→ (¬p∧¬r). Fill out the
truth table for ϕ and its subformulas. Compute a CNF as well as a DNF for ϕ from the
truth table.
p q r ¬q p ∨ ¬q ¬p ¬r ¬p ∧ ¬r ϕ = (p ∨ ¬q)→ (¬p ∧ ¬r)
F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Solution:

There is no solution available for this question yet.

35. [Self-Assessment] Given the formula ϕ = ¬(a→ ¬b)∨ (¬a→ c). Use the truth table of ϕ to
compute its representation in (a) CNF and (b) DNF. Solution:

There is no solution available for this question yet.

36. [Self-Assessment] Consider the propositional formula ϕ = (¬(¬a∧b)∧¬c). Fill out the truth
table for ϕ and its subformulas. Compute a CNF as well as a DNF for ϕ from the truth
table.
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a b c ¬a ¬a ∧ b ¬(¬a ∧ b) ¬c ϕ = (¬(¬a ∧ b) ∧ ¬c)
F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Solution:

There is no solution available for this question yet.

3.2.4 Tseitin Encoding

Consider the following logic equivalences when applying Tseitin’s encoding:

χ↔ (ϕ ∨ ψ) ⇔ (¬ϕ ∨ χ) ∧ (¬ψ ∨ χ) ∧ (¬χ ∨ ϕ ∨ ψ) (4)
χ↔ (ϕ ∧ ψ) ⇔ (¬χ ∨ ϕ) ∧ (¬χ ∨ ψ) ∧ (¬ϕ ∨ ¬ψ ∨ χ) (5)

χ↔ ¬ϕ ⇔ (¬χ ∨ ¬ϕ) ∧ (ϕ ∨ χ) (6)

37. [Self-Assessment] (a) What does it mean that two formulas ϕ and ψ are equisatisfiable? (b)
Explain the difference between satisfiability and equisatisfiability. Solution:

There is no solution available for this question yet.

38. [Self-Assessment] Suppose you have a propositional formula ϕ. Let ψ be the result of applying
Tseitin’s encoding to ϕ. Is ϕ equivalent to ψ? Provide a reason for your answer and explain
the relation between ϕ and ψ.

Solution:

There is no solution available for this question yet.

39. [Self-Assessment] Explain the concept of Tseitin’s Encoding to obtain formulas in CNF. Give
step-by-step instructions of how to apply Tseitin’s encoding to a propositional formula.
(Note: Focus on the concept. You do not need to quote the rewrite rules!) Solution:

There is no solution available for this question yet.

40. [Self-Assessment] Derive a Rewrite-Rule for a NAND node, i.e., what clauses are introduced
by the node x↔ (p NAND q)? Solution:

There is no solution available for this question yet.

41. [Self-Assessment] Derive a Rewrite-Rule for a NOR node, i.e., what clauses are introduced
by the node x↔ (p NOR q)? Solution:

There is no solution available for this question yet.

42. [Self-Assessment] Derive a Rewrite-Rule for a XOR node, i.e., what clauses are introduced
by the node x↔ (p ⊕ q)? Solution:
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There is no solution available for this question yet.

43. [Self-Assessment] Apply Tseitin’s encoding to the following formula:

ϕ = ¬(¬b ∧ ¬c) ∨ (¬c ∧ a).

For each variable you introduce, clearly indicate which subformula of ϕ it represents. So-
lution:

There is no solution available for this question yet.

44. [Self-Assessment] Apply Tseitin’s encoding to the following formula:

ϕ = (q ∧ ¬r) ∨ ¬(q ∧ ¬r)

. For each variable you introduce, clearly indicate which subformula of ϕ it represents. So-
lution:

There is no solution available for this question yet.

45. [Self-Assessment] Apply Tseitin’s encoding to the following formula:

ϕ = (¬(¬a ∧ b) ∧ ¬c).

For each variable you introduce, clearly indicate which subformula of ϕ it represents. So-
lution:

There is no solution available for this question yet.

46. [Self-Assessment] Apply Tseitin’s encoding to the following formula:

ϕ = (p ∨ ¬q) ∨ (¬p ∧ ¬r).

For each variable you introduce, clearly indicate which subformula of ϕ it represents. So-
lution:

There is no solution available for this question yet.

47. [Self-Assessment] Compute the propositional formula of the following circuit and transform
it into an equisatisfiable formula in CNF by applying Tseitin’s encoding. For each variable
you introduce, clearly indicate which subformula of ϕ it represents.
a

b

c

d

z

NOT

NOT

OR

OR

OR

AND NOT
u

t

v

w

x

y

Solution:

There is no solution available for this question yet.
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48. [Self-Assessment] Compute the propositional formula of the following circuit and transform
it into an equisatisfiable formula in CNF by applying Tseitin’s encoding. For each variable
you introduce, clearly indicate which subformula of ϕ it represents.
a

b

c

z

AND

NOT

NOT

OR

AND NOT

u

v

w

x

y

Solution:

There is no solution available for this question yet.

3.2.5 CEC Example

49. [Self-Assessment] Check whether ϕ1 = (a ∧ b) ∨ ¬c and ϕ2 = (a ∨ ¬c) ∧ (b ∨ ¬c) are seman-
tically equivalent using the reduction to satisfiability. Prepare everything until you have a
formula CNF(ϕ), that you can give to a SAT solver. Solution:

There is no solution available for this question yet.
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4 SAT Solvers
4.1 Lecture

4.1.1 The DPLL-Algorithm

1. [Lecture] Use the DPLL algorithm (without BCP, PL and clause learning) to determine
whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order
starting with the positive phase. If the set of clauses resulted in SAT, give a satisfying model.

Clause 1: (¬a ∨ b)
Clause 2: (¬b ∨ c)
Clause 3: (¬c ∨ d)
Clause 4: (¬d ∨ e)
Clause 5: (¬e ∨ ¬a)

Solution:

DPLL algorithm:
Step 1 2 3 4 5 6 7 8 9 10
Decision Level 0 1 2 3 4 5 5 4 3 2
Assignment - a a, b a, b, c a, b, c, d a, b, c, d, e a, b, c, d,¬e a, b, c,¬d a, b,¬c a,¬b
Cl. 1: ¬a, b 1 b 3 3 3 3 3 3 3 {} 7

Cl. 2: ¬b, c 2 2 c 3 3 3 3 3 {} 7 3

Cl. 3: ¬c, d 3 3 3 d 3 3 3 {} 7 3 3
Cl. 4: ¬d, e 4 4 4 4 e 3 {} 7 3 4 4
Cl. 5: ¬e,¬a 5 ¬e ¬e ¬e ¬e {} 7 3 ¬e ¬e ¬e
Decision a b c d e ¬e ¬d ¬c ¬b ¬a
Step 11 12 13 14 15
Decision Level 1 2 3 4 5
Assignment ¬a ¬a, b ¬a, b, c ¬a, b, c, d ¬a, b, c, d, e
Cl. 1: ¬a, b 3 3 3 3 3

Cl. 2: ¬b, c 2 c 3 3 3

Cl. 3: ¬c, d 3 3 d 3 3

Cl. 4: ¬d, e 4 4 4 e 3

Cl. 5: ¬e,¬a 3 3 3 3 3

Decision b c d e SAT
Model:
a = F, b = T, c = T, d = T, e = T

2. [Lecture] In the context of the DPLL algorithm, explain what a Unit Clause is. Give an
example. Solution:
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Definition - Unit Clause. A clause c is said to be a unit clause under some assignment
A if the following two conditions hold:
(a) The clause c is not satisfied by A.
(b) All but one of the variables in c are given a value by A.

Therefore, there is a single literal left in the set representing the clause under the assign-
ment.
An example would be:

• c = ¬a, b, c
• A = {¬a, c}

3. [Lecture] Use the DPLL algorithm with Boolean Constrain Propagation (without PL and
clause learning) to determine whether or not the set of clauses given is satisfiable. Decide
variables in alphabetical order starting with the positive phase. If the set of clauses resulted
in SAT, give a satisfying model.

Clause 1: (¬a ∨ b)
Clause 2: (¬b ∨ c)
Clause 3: (¬c ∨ d)
Clause 4: (¬d ∨ e)
Clause 5: (¬e ∨ ¬a)

Solution:

DPLL algorithm:
Step 1 2 3 4 5 6 7 8 9 10 11
Decision Level 0 1 1 1 1 1 1 2 2 2 2
Assignment - a a, b a, b, c a, b, c, d a, b, c, d, e ¬a ¬a, b ¬a, b, c ¬a, b, c, d ¬a, b, c, d, e
Cl. 1: ¬a, b 1 b 3 3 3 3 3 3 3 3 3

Cl. 2: ¬b, c 2 2 c 3 3 3 2 c 3 3 3

Cl. 3: ¬c, d 3 3 3 d 3 3 3 3 d 3 3

Cl. 4: ¬d, e 4 4 4 4 e 3 4 4 4 e 3

Cl. 5: ¬e,¬a 5 ¬e ¬e ¬e ¬e {} 7 3 3 3 3 3

BCP - b c d e - - c d e 3

Decision a - - - - ¬a b - - - SAT
Model:
a = F, b = T, c = T, d = T, e = T

4. [Lecture] In the context of the DPLL algorithm, explain what a Pure Literal is. Give an
example. Solution:

Definition - Pure Literal. A literal is pure if its negation does not appear in the
formula.

5. [Lecture] In the context of the DPLL algorithm, explain why it is advantageous to apply
Boolean Constrain Propagation (BCP) and Pure Literals (PL) before making a decision.
Solution:

Boolean Constraint Propagation and Pure Literals are so-called heuristics. BCP and
PL capture when the choices we can make are restricted in two different ways. It is
advantageous to apply these heuristics before making a decision, since it reduces the
amount of different assignments we have to check.
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6. [Lecture] Use the DPLL algorithm with Boolean Constrain Propagation and Pure Literals
(without clause learning) to determine whether or not the set of clauses given is satisfiable.
Decide variables in alphabetical order starting with the positive phase. If the set of clauses
resulted in SAT, give a satisfying model.

Clause 1: (¬a ∨ b)
Clause 2: (¬b ∨ c)
Clause 3: (¬c ∨ d)
Clause 4: (¬d ∨ e)
Clause 5: (¬e ∨ ¬a)

Solution:

DPLL algorithm:
Step 1 2 3 4 5
Decision Level 0 0 0 0 0
Assignment - ¬a ¬a,¬b ¬a,¬b,¬c ¬a,¬b,¬c,¬d
Cl. 1: ¬a, b 1 3 3 3 3

Cl. 2: ¬b, c 2 2 3 3 3

Cl. 3: ¬c, d 3 3 3 3 3

Cl. 4: ¬d, e 4 4 4 4 3

Cl. 5: ¬e,¬a 5 3 3 3 3

BCP - - - - -
PL ¬a ¬b ¬c ¬d -
Decision - - - - SAT

Model:
a = F, b = F, c = F, d = F, e = F

7. [Lecture] In the context of the DPLL algorithm, explain what Conflict-Driven Clause Learn-
ing is and why most modern SAT solvers use this technique. Solution:

The idea of conflict-driven clause learning is not to repeat steps that lead to a conflict.

When executing the DPLL algorithm we can maintain a so-called conflict graph. We can
use this graph to deduce which variables lead to a conflict. In Conflict-Driven Clause
Learning different SAT solvers apply different techniques to extract new learned clauses
from this graph.
The learned clauses help the SAT solver to no repeat mistakes in different execution
branches.

8. [Lecture] Consider the following conflict graph with the following set of clauses:

a

¬b

¬c

d

¬e

e

⊥
1

3

1

6

7

Clause 1: {¬a,¬c,¬d}
Clause 2: {a,¬d}
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Clause 3: {b, d}
Clause 4: {¬b, d, e}
Clause 5: {¬b,¬e}
Clause 6: {c,¬e}
Clause 7: {c, e}

Give the resolution proof for the given conflict graph and clauses and state the clause to be
learned from the conflict.

Solution:

6 c ∨ ¬e 7 c ∨ e
c 1 ¬a ∨ ¬c ∨ ¬d

¬a ∨ ¬d 3 b ∨ d
¬a ∨ b

The new learned clause is therefore Cl. 8: ¬a ∨ b

9. [Lecture] Use the DPLL algorithm with conflict-driven clause learning to determine whether
or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting
with the negative phase. For conflicts, draw conflict graphs after the end of the table, and
add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: {¬a,¬b}
Clause 2: {a, c}
Clause 3: {b,¬c}
Clause 4: {¬b, d}
Clause 5: {¬c,¬d}
Clause 6: {c, e}
Clause 7: {c,¬e}

Solution:
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DPLL algorithm:
Step 1 2 3 4 5 6 7 8 9 10
Decision Level 0 1 1 1 1 0 0 0 0 0
Assignment - ¬a ¬a, c ¬a, b, c ¬a, b, c,¬d - a a,¬b a,¬b,¬c a,¬b,¬c,¬e
Cl. 1: ¬a,¬b 1 3 3 3 3 1 ¬b 3 3 3

Cl. 2: a, c 2 c 3 3 3 2 3 3 3 3

Cl. 3: b,¬c 3 3 b 3 3 3 3 ¬c 3 3

Cl. 4: ¬b, d 4 4 4 d {} 7 4 4 3 3 3

Cl. 5: ¬c,¬d 5 5 ¬d ¬d 3 5 5 5 3 3

Cl. 6: c, e 6 6 3 3 3 6 6 6 e {} 7

Cl. 7: c,¬e 7 7 3 3 3 7 7 7 ¬e 3

Cl. 8: a - - - - learned a 8 3 3 3 3

BCP - c b ¬d - a ¬b ¬c ¬e -
PL - - - - - - - - - -
Decision ¬a - - - - - - - - UNSAT

Ad 5:

¬a c

¬d

b d

⊥
2

5

3

4

4. ¬b ∨ d 5. ¬c ∨ ¬d
¬b ∨ ¬c 3. b ∨ ¬c

¬c 2. a ∨ c
a

Ad 10:

a ¬b ¬c

¬e

e

⊥
8 1 3

7

6

6. c ∨ e 7. c ∨ ¬e
c 3. b ∨ ¬c

b 1. ¬a ∨ ¬b
¬a 8. a

⊥

10. [Lecture] Use the DPLL algorithm with conflict-driven clause learning to determine whether
or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting
with the positive phase. For conflicts, draw conflict graphs after the end of the table, and
add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Page 46 of 141



4.1 Lecture 4 SAT SOLVERS

Clause 1: (¬a ∨ d)
Clause 2: (¬d ∨ c)
Clause 3: (¬b ∨ e)
Clause 4: (¬b ∨ ¬e)
Clause 5: (b ∨ f)
Clause 6: (b ∨ ¬f)

Solution:

DPLL algorithm:
Step 1 2 3 4 5 6 7 8
Decision Level 0 0 0 1 1 0 0 0
Assignment - ¬a ¬a, c ¬a, b, c ¬a, b, c, e - ¬b ¬b, f
Cl. 1: ¬a, d 1 3 3 3 3 1 1 1
Cl. 2: ¬d, c 2 2 3 3 3 2 2 2
Cl. 3: ¬b, e 3 3 3 e 3 3 3 3

Cl. 4: ¬b,¬e 4 4 4 ¬e {} 7 4 3 3

Cl. 5: b, f 5 5 5 3 3 5 f 3

Cl. 6: b,¬f 6 6 6 3 3 6 ¬f {} 7

Cl. 7: ¬b - - - - learned ¬b 7 3 3

BCP - - - e - ¬b f -
PL ¬a c - - - - - -
Decision - - b - - - - UNSAT

Ad 5:

b

e

¬e

⊥

3

4

3. ¬b ∨ e 4. ¬b ∨ ¬e
¬b

Ad 8:

¬b

f

¬f

⊥
7

5

6

5. b ∨ f 6. b ∨ ¬f
b 7. ¬b

⊥

11. [Lecture] Use the DPLL algorithm with conflict-driven clause learning to determine whether
or not the set of clauses given is satisfiable. Decide variables in alphabetical order starting
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with the negative phase. For conflicts, draw conflict graphs after the end of the table, and
add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: (¬a ∨ ¬c)
Clause 2: (b ∨ c)
Clause 3: (¬b ∨ ¬d)
Clause 4: (¬d ∨ e)
Clause 5: (d ∨ e)
Clause 6: (a ∨ ¬c ∨ ¬e)
Clause 7: (¬b ∨ c ∨ d)

Solution:
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Step 1 2 3 4 5 6 7
Decision Level 0 1 2 2 2 2 1
Assignment - ¬a ¬a,¬b ¬a,¬b, c ¬a,¬b, c,¬e ¬a,¬b, c,¬e,¬d ¬a
Cl. 1: ¬a,¬c ¬a,¬c 3 3 3 3 3 3

Cl. 2: b, c b, c b, c c 3 3 3 b, c
Cl. 3: ¬b,¬d ¬b,¬d ¬b,¬d 3 3 3 3 ¬b,¬d
Cl. 4: ¬d, e ¬d, e ¬d, e ¬d, e ¬d, e ¬d 3 ¬d, e
Cl. 5: d, e d.e d.e d.e d.e d {} 7 d, e
Cl. 6: a,¬c,¬e a,¬c,¬e ¬c,¬e ¬c,¬e ¬e 3 3 ¬c,¬e
Cl. 7: ¬b, c, d ¬b, c, d ¬b, c, d 3 3 3 3 ¬b, c, d
Cl. 8: a.b - - - - - a, b b
Cl. 9: a - - - - - - -
BCP - - c ¬e ¬d - b
PL - - - - - - -
Decision ¬a ¬b - - - - -
Step 8 9 10 11 12 13 14
Decision Level 1 1 1 1 0 0 0
Assignment ¬a, b ¬a, b,¬d ¬a, b,¬d, c ¬a, b,¬d, c,¬e - a a,¬c
Cl. 1: ¬a,¬c 3 3 3 3 ¬a,¬c ¬c 3

Cl. 2: b, c 3 3 3 3 b, c b, c b
Cl. 3: ¬b,¬d ¬d 3 3 3 ¬b,¬d ¬b,¬d ¬b,¬d
Cl. 4: ¬d, e ¬d, e 3 3 3 ¬d, e ¬d, e ¬d, e
Cl. 5: d, e d, e e e {} 7 d, e d, e d, e
Cl. 6: a,¬c,¬e ¬c,¬e ¬c,¬e ¬e 3 a,¬c,¬e 3 3

Cl. 7: ¬b, c, d d, c c 3 3 ¬b, c, d ¬b, c, d ¬b, d
Cl. 8: a.b 3 3 3 3 a, b 3 3

Cl. 9: a - - - a a 3 3

BCP ¬d c ¬e - a ¬c b
PL - - - - - - -
Decision - - - - - - -
Step 15 16
Decision Level 0 0
Assignment a,¬c, b a,¬c, b,¬d
Cl. 1: ¬a,¬c 3 3

Cl. 2: b, c 3 3

Cl. 3: ¬b,¬d ¬d 3

Cl. 4: ¬d, e ¬d, e 3

Cl. 5: d, e d, e e
Cl. 6: a,¬c,¬e 3 3

Cl. 7: ¬b, c, d d {} 7

Cl. 8: a.b 3 3

Cl. 9: a 3 3

BCP ¬d -
PL - -
Decision - UNSAT
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First Conflict in Step 6:

¬a

¬b c

¬e

d

¬d

⊥
6

2

6

4

5

4. ¬d ∨ e 5. d ∨ e
e 6. a ∨ ¬c ∨ ¬e

a ∨ ¬c 2. b ∨ c
a ∨ b

Second Conflict in Step 11:

¬a b ¬d e

c ¬e

⊥

8 3 5

7

6

6. a ∨ ¬c ∨ ¬e 7. ¬b ∨ c ∨ d
a ∨ ¬b ∨ d ∨ ¬e 5. d ∨ e

a ∨ ¬b ∨ d 3. ¬b ∨ ¬d
a ∨ ¬b 8. a ∨ b

a

Second Conflict in Step 16:

a ¬c b ¬d

d

⊥

9 1 2

3

7

7. ¬b ∨ c ∨ d 3. ¬b ∨ ¬d
¬b ∨ c 2. b ∨ c

c 1. ¬a ∨ ¬c
¬a 9. a

⊥
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4.2 Practicals
For the following exercises use the DPLL algorithm (including Boolean Constraint Propagation
(BCP), pure literals, and conflict-driven clause learning) to check on paper, if the following CNF
formulas are satisfiable.

If the formula is satisfiable, give a satisfying model, else show a complete resolution proof for
the formula’s unsatisfiability.

• Write down all the steps of the DPLL algorithm,

• draw the conflict graphs,

• and state the resolution proofs for all learned clauses

Rules:

• When resolving a conflict, only undo the last decision.

• Choose variables for decisions, BCP and pure literals in alphabetical order, starting with
the negative phase (¬a > a > ¬b > b...).

• Always try to perform BCP first, before checking for pure literals, before making a decision.

1. [Practicals] [2 Points]

Clause 1: {a, b, c}
Clause 2: {¬a,¬b,¬c}
Clause 3: {a, c,¬e}
Clause 4: {¬b,¬c, e}
Clause 5: {b, e}
Clause 6: {b,¬d}
Clause 7: {¬c, d}
Clause 8: {¬c, e}

Solution:
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Step 1 2 3 4 5
Decision Level 0 1 2 2 2
Assignment - ¬a ¬a,¬b ¬a,¬b, c ¬a,¬b, c,¬d
Cl. 1: a, b, c a, b, c b, c c 3 3

Cl. 2: ¬a,¬b,¬c ¬a,¬b,¬c 3 3 3 3

Cl. 3: a, c,¬e a, c,¬e c,¬e c,¬e 3 3

Cl. 4: ¬b,¬c, e ¬b,¬c, e ¬b,¬c, e 3 3 3

Cl. 5: b, e b, e b, e e e e
Cl. 6: b,¬d b,¬d b,¬d ¬d ¬d 3

Cl. 7: ¬c, d ¬c, d ¬c, d ¬c, d d {} 7

Cl. 8: ¬c, e ¬c, e ¬c, e ¬c, e e e
BCP - - c ¬d -
PL - - - - -
Decision ¬a ¬b - - -

¬a

¬b

c

¬d ¬c

⊥

1

1

6 7

7. ¬c ∨ d 1. a ∨ b ∨ c
a ∨ b ∨ d 6. b ∨ ¬d

a ∨ b

Step (1) 6 7 8 9
Decision Level 1 1 1 2 2
Assignment ¬a ¬a, b ¬a, b, d ¬a, b, d,¬c ¬a, b, d,¬c,¬e
Cl. 1: a, b, c b, c 3 3 3 3

Cl. 2: ¬a,¬b,¬c 3 3 3 3 3

Cl. 3: a, c,¬e c,¬e c,¬e c,¬e ¬e 3

Cl. 4: ¬b,¬c, e ¬b,¬c, e ¬c, e ¬c, e 3 3

Cl. 5: b, e b, e 3 3 3 3

Cl. 6: b,¬d b,¬d 3 3 3 3

Cl. 7: ¬c, d ¬c, d ¬c, d 3 3 3

Cl. 8: ¬c, e ¬c, e ¬c, e ¬c, e 3 3

Cl. 9: a, b b 3 3 3 3

BCP b - - ¬e -
PL - d - - -
Decision - - ¬c - SAT

2. [Practicals] [2.5 Points]

Clause 1: {¬a, c}
Clause 2: {¬a, b,¬c}
Clause 3: {¬b, e}
Clause 4: {a, d}
Clause 5: {a,¬c}
Clause 6: {¬a,¬e}
Clause 7: {a,¬b}
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Clause 8: {b,¬d}

Solution:
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Step 1 2 3 4 5
Decision Level 0 1 1 1 1
Assignment - ¬a ¬a,¬b ¬a,¬b,¬c ¬a,¬b,¬c,¬d
Cl. 1: ¬a, c ¬a, c 3 3 3 3

Cl. 2: ¬a, b,¬c ¬a, b,¬c 3 3 3 3

Cl. 3: ¬b, e ¬b, e ¬b, e 3 3 3

Cl. 4: a, d a, d d d d {} 7

Cl. 5: a,¬c a,¬c ¬c ¬c 3 3

Cl. 6: ¬a,¬e ¬a,¬e 3 3 3 3

Cl. 7: a,¬b a,¬b ¬b 3 3 3

Cl. 8: b,¬d b,¬d b,¬d ¬d ¬d 3

BCP - ¬b ¬c ¬d -
PL - - - - -
Decision ¬a - - - -

¬a ¬b ¬d

d

⊥
7

4

8

8. b ∨ ¬d 4. a ∨ d
a ∨ b 7. a ∨ ¬b

a

Step (1) 6 7 8 9
Decision Level 0 0 0 0 0
Assignment - a a, c a, c, b a, c, b,¬e
Cl. 1: ¬a, c ¬a, c c 3 3 3

Cl. 2: ¬a, b,¬c ¬a, b,¬c b,¬c b 3 3

Cl. 3: ¬b, e ¬b, e ¬b, e ¬b, e e {} 7

Cl. 4: a, d a, d 3 3 3 3

Cl. 5: a,¬c a,¬c 3 3 3 3

Cl. 6: ¬a,¬e ¬a,¬e ¬e ¬e ¬e 3

Cl. 7: a,¬b a,¬b 3 3 3 3

Cl. 8: b,¬d b,¬d b,¬d b,¬d 3 3

Cl. 9: a a 3 3 3 3

BCP a c b ¬e -
PL - - - - -
Decision - - - - UNSAT

a c b e

¬e
⊥

9 1

2

2 3

6

3. ¬b ∨ e 6. ¬a ∨ ¬e
¬a ∨ ¬b 2. ¬a ∨ b ∨ ¬c

¬a ∨ ¬c 1. ¬a ∨ c
¬a 9. a

⊥
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3. [Practicals] [2.5 Points]

Clause 1: {a,¬b, c}
Clause 2: {b,¬c, d}
Clause 3: {a,¬b}
Clause 4: {a, c}
Clause 5: {¬c,¬d}

Solution:

Step 1 2 3 4
Decision Level 0 0 0 0
Assignment - a a, b,¬c a, b,¬c
Cl. 1: a,¬b, c a,¬b, c 3 3 3

Cl. 2: b,¬c, d b,¬c, d b,¬c, d 3 3

Cl. 3: a,¬b a,¬b 3 3 3

Cl. 4: a, c a, c 3 3 3

Cl. 5: ¬c,¬d ¬c,¬d ¬c,¬d ¬c,¬d 3

BCP - - - -
PL a b ¬c -
Decision - - - SAT

4. [Practicals] [3 Points]

Clause 1: {a,¬b}
Clause 2: {a, c}
Clause 3: {¬a, e}
Clause 4: {b, c}
Clause 5: {b, d}
Clause 6: {b,¬e}
Clause 7: {¬d, e}

Solution:
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Step 1 2 3 4 5 6
Decision Level 0 0 1 1 1 1
Assignment - c c,¬a c,¬a,¬b c,¬a,¬b, d c,¬a,¬b, d,¬e
Cl. 1: a,¬b a,¬b a,¬b ¬b 3 3 3

Cl. 2: a, c a, c 3 3 3 3 3

Cl. 3: ¬a, e ¬a, e ¬a, e 3 3 3 3

Cl. 4: b, c b, c 3 3 3 3 3

Cl. 5: b, d b, d b, d b, d d 3 3

Cl. 6: b,¬e b,¬e b,¬e b,¬e ¬e ¬e 3

Cl. 7: ¬d, e ¬d, e ¬d, e ¬d, e ¬d, e e {} 7

BCP - - ¬b d ¬e -
PL c - - - - -
Decision - ¬a - - - -

c

¬a ¬b d e

¬e
⊥

1 5
6

7

7. ¬d ∨ e 6. b ∨ ¬e
¬d ∨ b 5. b ∨ d

b 1. a ∨ ¬b
a

Step (1) 7 8 9
Decision Level 0 0 0 0
Assignment - a a, e a, e, b
Cl. 1: a,¬b a,¬b 3 3 3

Cl. 2: a, c a, c 3 3 3

Cl. 3: ¬a, e ¬a, e e 3 3

Cl. 4: b, c b, c b, c b, c 3

Cl. 5: b, d b, d b, d b, d 3

Cl. 6: b,¬e b,¬e b,¬e b 3

Cl. 7: ¬d, e ¬d, e ¬d, e 3 3

Cl. 8: a a 3 3 3

BCP a e b SAT
PL - - - -
Decision - - - -

5. [Practicals] [3 Points]

Clause 1: {a, b, c}
Clause 2: {¬a, b}
Clause 3: {¬b, c}
Clause 4: {¬c, d}
Clause 5: {¬c, e}
Clause 6: {¬d,¬e}

Solution:
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Step 1 2 3 4 5 6
Decision Level 0 1 2 2 2 2
Assignment - ¬a ¬a,¬b ¬a,¬b, c ¬a,¬b, c, d ¬a,¬b, c, d, e
Cl. 1: a, b, c a, b, c b, c c 3 3 3

Cl. 2: ¬a, b ¬a, b 3 3 3 3 3

Cl. 3: ¬b, c ¬b, c ¬b, c 3 3 3 3

Cl. 4: ¬c, d ¬c, d ¬c, d ¬c, d d 3 3

Cl. 5: ¬c, e ¬c, e ¬c, e ¬c, e e e {} 7

Cl. 6: ¬d,¬e ¬d,¬e ¬d,¬e ¬d,¬e ¬d,¬e ¬e 3

BCP - - c d ¬e -
PL - - - - - -
Decision ¬a ¬b - - - -

¬a

¬b

c

d

e

¬e

⊥
1

1
4

5

6

6. ¬d ∨ ¬e 4. ¬c ∨ d
¬e ∨ ¬c 5. ¬c ∨ e

¬c 1. a ∨ b ∨ c
a ∨ b

Remark: One could also directly learn b in this case by further inspection of the clauses:

6. ¬d ∨ ¬e 4. ¬c ∨ d
¬e ∨ ¬c 5. ¬c ∨ e

¬c 1. a ∨ b ∨ c
a ∨ b 2. ¬a ∨ b

b

Step (2) 7 8 9 10
Decision Level 1 1 1 1 1
Assignment ¬a ¬a, b ¬a, b, c ¬a, b, c, d ¬a, b, c, d,¬e
Cl. 1: a, b, c b, c 3 3 3 3

Cl. 2: ¬a, b 3 3 3 3 3

Cl. 3: ¬b, c ¬b, c c 3 3 3

Cl. 4: ¬c, d ¬c, d ¬c, d d 3 3

Cl. 5: ¬c, e ¬c, e ¬c, e e e {} 7

Cl. 6: ¬d,¬e ¬d,¬e ¬d,¬e ¬d,¬e ¬e 3

Cl. 7: a, b b 3 3 3 3

BCP b c d ¬e -
PL - - - - -
Decision - - - - -
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¬a b c

d

e

¬e

⊥
7 3

4

5

6

6. ¬d ∨ ¬e 4. ¬c ∨ d
¬e ∨ ¬c 5. ¬c ∨ e

¬c 3. ¬b ∨ c
¬b 7. a ∨ b

a

Step (1) 11 12 13 14 15
Decision Level 0 0 0 0 0 0
Assignment - a a, b a, b, c a, b, c, d a, b, c, d,¬e
Cl. 1: a, b, c a, b, c 3 3 3 3 3

Cl. 2: ¬a, b ¬a, b b 3 3 3 3

Cl. 3: ¬b, c ¬b, c ¬b, c c 3 3 3

Cl. 4: ¬c, d ¬c, d ¬c, d ¬c, d d 3 3

Cl. 5: ¬c, e ¬c, e ¬c, e ¬c, e e e {} 7

Cl. 6: ¬d,¬e ¬d,¬e ¬d,¬e ¬d,¬e ¬e ¬e 3

Cl. 7: a, b a, b 3 3 3 3 3

Cl. 8: a a 3 3 3 3 3

BCP a b c d ¬e -
PL - - - - - -
Decision - - - - - UNSAT

a b c

d

e

¬e

⊥
8 2 3

4
5

6

6. ¬d ∨ ¬e 4. ¬c ∨ d
¬e ∨ ¬c 5. ¬c ∨ e

¬c 3. ¬b ∨ c
¬b 2. ¬a ∨ b

¬a 8. a
⊥

6. [Practicals] [4 Points]

Clause 1: {a,¬c,¬e}
Clause 2: {¬a,¬e}
Clause 3: {b, e}
Clause 4: {¬b, d, e}
Clause 5: {¬b,¬d}
Clause 6: {c,¬d}
Clause 7: {c, d}

Solution:
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Step 1 2 3 4 5 6
Decision Level 0 1 2 2 2 2

Assignment - ¬a ¬a,¬b ¬a,¬b, e ¬a,¬b, e,
¬c

¬a,¬b, e,
¬c,¬d

Cl. 1: a,¬c,¬e a,¬c,¬e ¬c,¬e ¬c,¬e ¬c 3 3

Cl. 2: ¬a,¬e ¬a,¬e 3 3 3 3 3

Cl. 3: b, e b, e b, e e 3 3 3

Cl. 4: ¬b, d, e ¬b, d, e ¬b, d, e 3 3 3 3

Cl. 5: ¬b,¬d ¬b,¬d ¬b,¬d 3 3 3 3

Cl. 6: c,¬d c,¬d c,¬d c,¬d c,¬d ¬d 3

Cl. 7: c, d c, d c, d c, d c, d d {} 7

BCP - - e ¬c ¬d -
PL - - - - - -
Decision ¬a ¬b - - - -

¬a

¬b e

¬c

d

¬d

⊥

3

1

1 6

7

6. c ∨ ¬d 7. c ∨ d
c 1. a ∨ ¬c ∨ ¬e

a ∨ ¬e 3. b ∨ e
a ∨ b

Step (2) 7 8 9 10
Decision Level 1 1 1 1 1

Assignment ¬a ¬a, b ¬a, b,¬d ¬a, b,¬d,
c

¬a, b,¬d,
c,¬e

Cl. 1: a,¬c,¬e ¬c,¬e ¬c,¬e ¬c,¬e ¬e 3

Cl. 2: ¬a,¬e 3 3 3 3 3

Cl. 3: b, e b, e 3 3 3 3

Cl. 4: ¬b, d, e ¬b, d, e d, e e e {} 7

Cl. 5: ¬b,¬d ¬b,¬d ¬d 3 3 3

Cl. 6: c,¬d c,¬d c,¬d 3 3 3

Cl. 7: c, d c, d c, d c 3 3

Cl. 8: a, b b 3 3 3 3

BCP b ¬d c ¬e -
PL - - - - -
Decision - - - - -

¬a b ¬d c

¬e

e

⊥
8 5

1
1

7

4
4
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1. a ∨ ¬c ∨ ¬e 4. ¬b ∨ d ∨ ∨e
a ∨ ¬b ∨ ¬c ∨ d 7. c ∨ d

a ∨ ¬b ∨ d 5. ¬b ∨ ¬d
a ∨ ¬b 8. a ∨ b

a

Step (1) 11 12 13 14
Decision Level 0 0 0 0 0

Assignment - a a,¬e a,¬e, b a,¬e,
b,¬d

Cl. 1: a,¬c,¬e a,¬c,¬e 3 3 3 3

Cl. 2: ¬a,¬e ¬a,¬e ¬e 3 3 3

Cl. 3: b, e b, e b, e b 3 3

Cl. 4: ¬b, d, e ¬b, d, e ¬b, d, e ¬b, d d {} 7

Cl. 5: ¬b,¬d ¬b,¬d ¬b,¬d ¬b,¬d ¬d 3

Cl. 6: c,¬d c,¬d c,¬d c,¬d c,¬d 3

Cl. 7: c, d c, d c, d c, d c, d c
Cl. 8: a, b a, b 3 3 3 3

Cl. 9: a a 3 3 3 3

BCP a ¬e b ¬d -
PL - - - - -
Decision - - - - UNSAT

a ¬e b

d

¬d

⊥
9 2 3

4
4

5

5. ¬b ∨ ¬d 4. ¬b ∨ d ∨ ∨e
¬b ∨ e 3. b ∨ e

e 2. ¬a ∨ ¬e
¬a 8. a

⊥

7. [Practicals] [3 Points]
You are about to plan a train journey in Europe, but you are not yet sure, where to go. You
have a few cities in mind, but there are a few restrictions due to a pandemic:
Your biggest wish is to go to Paris, you are definitely going there. After visiting Paris you
are either going to London, or to Madrid, but not both. There is no direct train from your
home to Paris, therefore you can take a train either via Berlin or via Zurich. On your way
back you can choose between Amsterdam or Zurich. As you want to visit as many cities
as possible, you do not want to go trough Zurich twice, therefore you have to go at least
through once trough Amsterdam or Berlin. As traveling is currently restricted due to a
pandemic, you may not visit Madrid after you visited Berlin and vice versa. You may also
not visit London after you went to Amsterdam and vice versa.
Create a CNF from this description. You can use the following rule to make the formula
shorter:

(¬s ∧ t) ∨ (s ∧ ¬t) ` ¬s ∨ ¬t
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Then use the DPLL algorithm to figure out which which cities would be theoretically pos-
sible to visit during the vacation. Formulate your answer as a sentence in English. Solution:

There is no solution available for this question yet.

4.3 Self-Assessment
4.3.1 The SAT-Problem

12. [Self-Assessment] Define the Boolean Satisfiability Problem? Solution:

There is no solution available for this question yet.

13. [Self-Assessment] What is the complexity of the SAT-Problem? What does its complexity
imply? Solution:

There is no solution available for this question yet.

4.3.2 The DPLL-Algorithm

14. [Self-Assessment] Explain the basic DPLL algorithm for checking satisfiability of proposi-
tional formulas in Conjunctive Normal Form (CNF). Give a pseudo-code implementation
to illustrate your explanations. For simplicity, you can skip all advanced concepts such as
Boolean Constraint Propagation, Pure Literals, and Clause Learning. Solution:

There is no solution available for this question yet.

15. [Self-Assessment] SAT solvers make choices based on heuristics on which variable and value
to pick for the next decision. (a) Why is the variable order for decisions important for the
performance of SAT solvers? (b) Explain a commonly used decision heuristics. Solution:

There is no solution available for this question yet.

16. [Self-Assessment] Given a formula ϕ in CNF representation. (a) What is a partial assignment
of variables? (b) What is a total assignment of variables? (c) What does it mean that a
clause in conflicting with an assignment? (d) What does it mean that a clause in satisfied
by an assignment? Solution:

There is no solution available for this question yet.

17. [Self-Assessment] Given an formula ϕ in CNF representation and an assignment A. Tick the
following statements if they are true.

� A clause is satisfied by A, if A makes a clause true.
� If a clause is conflicting with an assignment A, if the assignment makes the clause false.
� If a clause is conflicting with an assignment A, all variables in the clause are given the

opposite value in A.
� A expression ϕ[A] means that all variables within ϕ are assigned according to its truth

values in A.
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18. [Self-Assessment] Within the context of DPLL, explain the terms decision and decision level.
Solution:

There is no solution available for this question yet.

19. [Self-Assessment] Given the set of clauses Cϕ = {{a,¬b}, {¬a, c}, {b,¬c}, {¬a,¬c}} and the
assignment A = {¬a}. Tick the correct statements.

� ϕ[A] = {{a,¬b}, {¬a, c}, {¬a,¬c}}
� ϕ[A] = {{c}, {b,¬c}, {¬c}}
� ϕ[A] = {{¬b}, {b,¬c}}
� ϕ[A] = {{¬b}, {c}, {b,¬c}, {¬c}}

20. [Self-Assessment] In the context of the DPLL algorithm, what does a conflict that arises at
decision level 0 imply about the satisfiability or unsatisfiability of a formula? Explain your
answer. Solution:

There is no solution available for this question yet.

21. [Self-Assessment] Use the DPLL algorithm (without BCP, PL and clause learning) to deter-
mine whether or not the set of clauses given is satisfiable. Decide variables in alphabetical
order starting with the positive phase. If the set of clauses resulted in SAT, give a satisfying
model.

Clause 1: (¬a ∨ b ∨ ¬c)
Clause 2: (a ∨ ¬b ∨ c)
Clause 3: (¬a ∨ ¬b ∨ c)
Clause 4: (a ∨ b ∨ ¬c)

Solution:

There is no solution available for this question yet.

22. [Self-Assessment] Consider the formula ϕ that consists of the conjunction of the following
clauses:

Clause 1: (¬a ∨ b)
Clause 2: (¬a ∨ ¬d)
Clause 3: (c ∨ ¬b)
Clause 4: (¬c ∨ d)

Use the DPLL algorithm (without BCP, PL and clause learning) to determine whether or
not the set of clauses given is satisfiable. If the set of clauses resulted in SAT, give a satisfying
model.

(a) Decide variables in alphabetical order starting with the positive phase.
(b) Decide variables in alphabetical order starting with the negative phase.
(c) What differences can you see between 22a and 22b? Explain in your own words, why

for the DPLL algorithm making good decisions is very important.
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Solution:

There is no solution available for this question yet.

23. [Self-Assessment] In the context of the DPLL algorithm, explain what Boolean Constraint
Propagation is. Give an example. Solution:

There is no solution available for this question yet.

24. [Self-Assessment] Use the DPLL algorithm with Boolean Constrain Propagation (without
PL and clause learning) to determine whether or not the set of clauses given is satisfiable.
Decide variables in alphabetical order starting with the positive phase. If the set of clauses
resulted in SAT, give a satisfying model.

Clause 1: (¬d ∨ ¬b ∨ ¬a)
Clause 2: (¬e ∨ a ∨ ¬f)
Clause 3: (¬a ∨ c ∨ b)
Clause 4: (f ∨ a ∨ e)
Clause 5: (d ∨ ¬a ∨ ¬b)
Clause 6: (¬a ∨ ¬c ∨ b)

Solution:

There is no solution available for this question yet.

25. [Self-Assessment] Why does the DPLL algorithm check for Boolean Constraint Propagations
(BCP) and Pure Literals (PL) before making a decision? Solution:

There is no solution available for this question yet.

26. [Self-Assessment] Why is the decision level in the DPLL algorithm only incremented after a
decision was made but not when the Pure Literal Rule or the Boolean Constrain Propagation
Rule was applied? Solution:

There is no solution available for this question yet.

27. [Self-Assessment] Use the DPLL algorithm with Boolean Constrain Propagation and Pure
Literals (without clause learning) to determine whether or not the set of clauses given is
satisfiable. Decide variables in alphabetical order starting with the positive phase. If the set
of clauses resulted in SAT, give a satisfying model.

Clause 1: (¬c ∨ d)
Clause 2: (a ∨ ¬d ∨ ¬e)
Clause 3: (b ∨ ¬c)
Clause 4: (c ∨ e)
Clause 5: (¬b ∨ ¬c)
Clause 6: (a ∨ b)

Solution:

There is no solution available for this question yet.
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28. [Self-Assessment] Explain conflict driven clause learning (CDCL). How do learned clauses
prevent the DPLL algorithm of running into already observed conflicts multiple times? So-
lution:

There is no solution available for this question yet.

29. [Self-Assessment] In the context of DPLL, give the definition of the resolution rule used to
construct a resolution proof. Show how the resolution rule derives from the basic natural
deduction rules by providing a natural deduction proof. Solution:

There is no solution available for this question yet.

30. [Self-Assessment] Consider the following conflict graph with the following set of clauses:

¬a ¬b ¬c ¬e

d

¬d

⊥
3

4

5

1

2

1

4

Clause 1: {b, c, d}
Clause 2: {c,¬e}
Clause 3: {a,¬b}
Clause 4: {a,¬d, e}
Clause 5: {b,¬c}

State the learned clause by making a resolution proof according to the given conflict graph
and given clauses. Solution:

There is no solution available for this question yet.

31. [Self-Assessment] Consider the formula ϕ that consists of the conjunction of the following
clauses:

Clause 1: (a ∨ b)
Clause 2: (¬b ∨ c)
Clause 3: (¬a ∨ ¬c)
Clause 4: (b ∨ c)
Clause 5: (a ∨ ¬b)

(a) Use DPLL with learning to show that ϕ is unsatisfiable. Decide variables in alphabetic
order and starting with the positive phase.

(b) State and briefly explain the resolution rule.
(c) Using your results from 31a, give a resolution proof of the unsatisfiability of ϕ.

Solution:

There is no solution available for this question yet.
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32. [Self-Assessment] Use the DPLL algorithm with conflict-driven clause learning to determine
whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order
starting with the negative phase. For conflicts, draw conflict graphs after the end of the
table, and add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: {a, b,¬c}
Clause 2: {¬b, c, d}
Clause 3: {c, d,¬e}
Clause 4: {¬a, d,¬e}
Clause 5: {a, b,¬d}
Clause 6: {c,¬d, e}

Solution:

There is no solution available for this question yet.

33. [Self-Assessment] Use the DPLL algorithm with conflict-driven clause learning to determine
whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order
starting with the negative phase. For conflicts, draw conflict graphs after the end of the
table, and add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: {¬a,¬b}
Clause 2: {a, c, e}
Clause 3: {b,¬d}
Clause 4: {¬c, d, e}
Clause 5: {¬d, e}
Clause 6: {¬a, b}
Clause 7: {a, d,¬e}

Solution:

There is no solution available for this question yet.

34. [Self-Assessment] Use the DPLL algorithm with conflict-driven clause learning to determine
whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order
starting with the negative phase. For conflicts, draw conflict graphs after the end of the
table, and add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: {a,¬c}
Clause 2: {b, c, e}
Clause 3: {b,¬e}

Page 65 of 141



4.3 Self-Assessment 4 SAT SOLVERS

Clause 4: {¬a, c}
Clause 5: {d, e}
Clause 6: {b,¬d}
Clause 7: {¬d,¬e}
Clause 8: {a, c}

Solution:

There is no solution available for this question yet.

35. [Self-Assessment] Use the DPLL algorithm with conflict-driven clause learning to determine
whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order
starting with the negative phase. For conflicts, draw conflict graphs after the end of the
table, and add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: {a, b}
Clause 2: {¬a, c}
Clause 3: {a,¬d}
Clause 4: {¬b, c}
Clause 5: {¬c, d}
Clause 6: {¬c, e}
Clause 7: {d,¬e}

Solution:

There is no solution available for this question yet.

36. [Self-Assessment] Use the DPLL algorithm with conflict-driven clause learning to determine
whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order
starting with the negative phase. For conflicts, draw conflict graphs after the end of the
table, and add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: {¬a,¬b}
Clause 2: {a, d, e}
Clause 3: {b,¬c}
Clause 4: {c,¬d, e}
Clause 5: {¬c, e}
Clause 6: {¬a, b}
Clause 7: {a, c,¬e}

Solution:

There is no solution available for this question yet.
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37. [Self-Assessment] Use the DPLL algorithm with conflict-driven clause learning to determine
whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order
starting with the negative phase. For conflicts, draw conflict graphs after the end of the
table, and add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: {¬b, c, d}
Clause 2: {¬b,¬d}
Clause 3: {a,¬c}
Clause 4: {¬c, e}
Clause 5: {b, c}
Clause 6: {¬a,¬e}

Solution:

There is no solution available for this question yet.

38. [Self-Assessment] Use the DPLL algorithm with conflict-driven clause learning to determine
whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order
starting with the negative phase. For conflicts, draw conflict graphs after the end of the
table, and add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: {b, d}
Clause 2: {b, c}
Clause 3: {¬b,¬e}
Clause 4: {¬a,¬c}
Clause 5: {¬c,¬d}
Clause 6: {¬b, c}
Clause 7: {a, b}
Clause 8: {¬b, d, e}

Solution:

There is no solution available for this question yet.

39. [Self-Assessment] Use the DPLL algorithm with conflict-driven clause learning to determine
whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order
starting with the negative phase. For conflicts, draw conflict graphs after the end of the
table, and add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: {¬b, d, e}
Clause 2: {b, e}
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Clause 3: {c, d}
Clause 4: {¬a,¬e}
Clause 5: {a,¬c,¬e}
Clause 6: {c,¬d}
Clause 7: {¬b,¬d}

Solution:

There is no solution available for this question yet.

40. [Self-Assessment] Use the DPLL algorithm with conflict-driven clause learning to determine
whether or not the set of clauses given is satisfiable. Decide variables in alphabetical order
starting with the negative phase. For conflicts, draw conflict graphs after the end of the
table, and add the learned clause to the table.
If the set of clauses resulted in SAT, give a satisfying model. If the set of clauses resulted in
UNSAT, give a resolution proof that shows that the conjunction of the clauses from the table
is unsatisfiable.

Clause 1: (a ∨ b ∨ c)
Clause 2: (¬a ∨ b)
Clause 3: (¬b ∨ c)
Clause 4: (¬c ∨ d)
Clause 5: (¬c ∨ e)
Clause 6: (¬d ∨ ¬e)

Solution:

There is no solution available for this question yet.

41. [Self-Assessment] It is Sunday and your fridge is almost empty. You think that you can
probably prepare a decent pizza with the little ingredients you have.
You do have dough. The dough is absolutely necessary for your pizza. You also have arugula,
bell pepper and eggplant. You want to put at least one of those three ingredients as toppings
on your pizza. Cheese is necessary for the pizza too. You have cheddar and feta. You can
use one or both kinds of cheese. You don’t like the combination of feta and bell pepper, so
you can put at most one of those two ingredients on your pizza. Furthermore you need to
save some veggies for dinner, so you can only use either the bell pepper or the eggplant for
your pizza.
Create a CNF from this description. You can use the following rule to make the formula
shorter:

(¬s ∧ t) ∨ (s ∧ ¬t) ` ¬s ∨ ¬t

Then use a DPLL to figure out which ingredients you should use for your pizza and which
ingredients you shouldn’t use. Formulate your answer as a sentence. Solution:

There is no solution available for this question yet.
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42. [Self-Assessment] Your little cousin needs help to plan her birthday party. There are five
kids she thinks about inviting, but not all of them get along. Here is what she tells you:
My very best friend is Anthony, I have to invite him! I’m also good friends with Daisy and
Connie, I want at least one of them to come. But Daisy does not like Benjamin, I can’t
invite them both! But I do like Benjamin, and I also like Emily. I’d want one of them to
be there, or both of them. But Emily is always fighting with Daisy, so only one of them can
come.
Create a CNF from this description. You can use the following rule to make the formula
shorter:

(¬s ∧ t) ∨ (s ∧ ¬t) ` ¬s ∨ ¬t

Then use the DPLL algorithm to figure out which kids your cousin should invite to her birth-
day party, which kids she should not invite and which kids she can invite without upsetting
any other invited guests. Formulate your answer as a sentence. Solution:

There is no solution available for this question yet.
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5 Binary Decision Diagrams
5.1 Lecture

5.1.1 Binary Decision Diagram

1. [Lecture] Given the Binary Decision Diagram (BDD) below, label and explain the different
elements of the diagram.

f

a

b

c

e

1 0

c

d

Solution:

f

a

b

c

e

1 0

c

d

T E

ET

T

E

T
E

T E

T

E

A binary decision diagram represents a Boolean formula f . It is a DAG with two terminal
nodes that are labelled with 0 and 1. The internal nodes are labelled with the Boolean
variables of the formula (here a, b, c, d and e). Each internal node has exactly two outgoing
edges: one edge labeled with a T (the then-edge), and another edge that is labeled with
an E (the else-edge) or marked with a circle. There is a unique initial node called the
function node labeled with f that does not have any incoming edges and one outgoing
edge to the internal variable node on the first level.

2. [Lecture] Given the Binary Decision Diagram (BDD) below. (a) Find a satisfying model
M1, i.e., M1 |= f . (b) Find a falsifying model M2, i.e., M2 6|= f .
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f

a

b

c

e

1 0

c

d

Solution:

(a) M1 = {a = >, b = >, c = >}
(b) M2 = {a = ⊥, c = ⊥, d = ⊥}

3. [Lecture] Given the Binary Decision Diagram (BDD) below. Construct the formula f in
disjunctive normal form (DNF) that is represented by the BDD.

f

a

b

c

e

1 0

c

d

Solution:

f = (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (a ∧ b ∧ ¬c ∧ e) ∨ (a ∧ ¬b ∧ ¬c ∧ e) ∨
(a ∧ b ∧ ¬c ∧ ¬e) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬e) ∨ (¬a ∧ c ∧ e) ∨ (¬a ∧ c ∧ ¬e) ∨

(¬a ∧ ¬c ∧ d ∧ e) ∨ (¬a ∧ ¬c ∧ d ∧ ¬e)

5.1.2 Reduced Ordered BDDs

In the following examples, we have the following convention: Else-edges are marked with
circles. Filled circles represent the complemented attribute. Dangling edges are assumed to
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point to the constant node true.

4. [Lecture] Transform the given Binary Decision Diagram (BDD) into a reduced ordered BDD
(ROBDD) using the variable order a < b < c.

f

a

b

c c

1

b

c

0

c

Solution:

f

a

c b
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5. [Lecture] Transform the given Binary Decision Diagram (BDD) into a reduced ordered BDD
(ROBDD) using the variable order a < b < c.

f

a

b

c c

Solution:

f

a

c

6. [Lecture] A Reduced and Ordered Binary Decision Diagram (ROBDD) is a canonical repre-
sentation of a Boolean formula. Explain what this means and why this is the case. Solution:

This means that for a given variable order, if two formulas f1 and f2 are semantically
equivalent, they will be represented through the same ROBDD.
The representations of two formulas as ROBDDs do not have any redundancies and have
the same satisfying models. Under the assumption that the same variable order has
been chosen, the ROBDD representations of two semantically equivalent formulas must
therefore be the same.

7. [Lecture] Given the Binary Decision Diagram (BDD) below. Construct the formula f in
disjunctive normal form (DNF) that is represented by the BDD.
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f

a

b

c

e

c

d

Solution:

f = (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ e) ∨ (a ∧ b ∧ ¬c ∧ ¬e) ∨ (¬a ∧ ¬c ∧ ¬d) ∨
(¬a ∧ c ∧ ¬e) ∨ (¬a ∧ ¬c ∧ d ∧ e)

5.1.3 Construction of Reduced Ordered BDDs

8. [Lecture] Construct a ROBDD for the formula

f = (a ∧ b) ∨ ¬a ∨ (c↔ d)

using alphabetic variable order. Use complemented edges and a node for true as the only
constant node. To simplify drawing, you may assume that dangling edges point to the con-
stant node. Write down all cofactors that you compute to obtain the final result and mark
them in the graph. Solution:
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fa = b ∨ (c↔ d)
fab = >
fa¬b = c↔ d

fa¬bc = d
fa¬bcd = >
fa¬bc¬d = ⊥

fa¬b¬c = ¬d = fabc
f¬a = >

The final ROBDD:

f

a

b

c

d

9. [Lecture] Construct a ROBDD for the formula

f = (r ∧ p) ∨ (¬r ∧ ¬p) ∨ (s ∧ ¬r) ∨ (¬s ∧ r) ∨ (¬r ∧ q),

using variable order p < q < r < s. Use complemented edges and a node for true as the
only constant node. To simplify drawing, you may assume that dangling edges point to the
constant node. Write down all cofactors that you compute to obtain the final result and
mark them in the graph. Solution:
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fp = r ∨ (s ∧ ¬r) ∨ (¬s ∧ r) ∨ (¬r ∧ q)
fpq = r ∨ (s ∧ ¬r) ∨ (¬s ∧ r) ∨ ¬r = >
fp¬q = r ∨ (s ∧ ¬r) ∨ (¬s ∧ r)

fp¬qr = >
fp¬q¬r = s

fp¬q¬rs = >
fp¬q¬r¬s = ⊥

f¬p = ¬r ∨ (s ∧ ¬r) ∨ (¬s ∧ r) ∨ (¬r ∧ q)
f¬pq = ¬r ∨ (s ∧ ¬r) ∨ (¬s ∧ r) ∨ ¬r = ¬r ∨ (s ∧ ¬r) ∨ (¬s ∧ r)
f¬p¬q = ¬r ∨ (s ∧ ¬r) ∨ (¬s ∧ r)

⇒ q does not have an influence on the formula. These cofactors can be skipped.
f¬pr = ¬s = fp¬q¬r

f¬p¬r = >

The final ROBDD:

f

q

q

rr

s

10. [Lecture] Construct a ROBDD for the formula

f = (r ∧ ¬p) ∨ (¬r ∧ p) ∨ (s ∧ ¬r) ∨ (¬s ∧ r) ∨ (r ∧ q),

using variable order p < q < r < s. Use complemented edges and a node for true as the
only constant node. To simplify drawing, you may assume that dangling edges point to the
constant node. Write down all cofactors that you compute to obtain the final result and
mark them in the graph. Solution:
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f = (r ∧ ¬p) ∨ (r ∧ ¬p) ∨ (s ∧ ¬r) ∨ (¬s ∧ r) ∨ (r ∧ q),

fp = ¬r ∨ (s ∧ ¬r) ∨ (¬s ∧ r) ∨ (r ∧ q)
fpq = >
fp¬q = r ∨ (s ∧ ¬r) ∨ (¬s ∧ r)

fp¬qr = >
fp¬q¬r = s

fp¬q¬rs = >
fp¬q¬r¬s = ⊥

f¬p = r ∨ (s ∧ ¬r) ∨ (¬s ∧ r) ∨ (r ∧ q)
f¬pq = r ∨ (s ∧ ¬r) ∨ (¬s ∧ r)
f¬p¬q = r ∨ (s ∧ ¬r) ∨ (¬s ∧ r)

⇒ q does not have an influence on the formula. These cofactors can be skipped.
f¬pr = >
f¬p¬r = s = fp¬q¬r

The final ROBDD:

f

q

q r

r

s
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5.2 Practicals

1. [Practicals] [2 Points]

(a) Use the BDD shown in the figure on the right to check if
the formula it represents evaluates to true or false with
the following variable assignments.

i. M1 : p = >, r = ⊥, q = >, s = ⊥
ii. M2 : p = ⊥, r = ⊥, q = ⊥, s = >

(b) Find the formula f that is represented by the BDD.

f

p

r r

q

s

q

Solution:

(a) i. false
ii. false

(b) f = (p ∧ ¬r ∧ q ∧ s) ∨ (¬p ∧ r ∧ q ∧ s) ∨ (¬p ∧ ¬r ∧ q)

2. [Practicals] [2 Points]

(a) Use the BDD shown in the figure on the right to check if
the formula it represents evaluates to true or false with
the following variable assignments.

i. M1 : a = ⊥, b = >, c = ⊥, d = >
ii. M2 : a = >, b = >, c = >, d = >

(b) Find the formula f that is represented by the BDD.

f

c

d

b

d

b

a

Solution:

(a) i. true
ii. false

(b) f = (c ∧ ¬d) ∨ (c ∧ d ∧ ¬b) ∨ (¬c ∧ d ∧ b ∧ ¬a)
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3. [Practicals] [2 Points] Convert the following BDD into a reduced ordered BDD.

f

q

s

r

p p

s

r

p p

Solution:

f

s

r

p

4. [Practicals] [3 Points] Construct a ROBDD for the formula

f = (a ∧ d ∧ c) ∨ (b ∧ ¬d ∧ ¬a) ∨ (c→ ¬d) ∨ (a→ ¬b)

using variable order b < a < d < c. Use complemented edges and a node for true as the
only constant node. To simplify drawing, you may assume that dangling edges point to the
constant node. Write down all cofactors that you compute to obtain the final result and
mark them in the graph. Solution:

f = (a ∧ d ∧ c) ∨ (b ∧ ¬d ∧ ¬a) ∨ (c→ ¬d) ∨ (a→ ¬b)
fb = >
f¬b = >

f

5. [Practicals] [3.5 Points] Construct a reduced ordered binary decision diagram (ROBDD)
for the formula
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f = (p⊕ q) ∧ ¬r

using variable order p < q < r. Use complemented edges and a node for true as the only
constant node. To simplify drawing, you may assume that dangling edges point to the con-
stant node. Write down all cofactors that you compute to obtain the final result and mark
them in the graph. Solution:

f = (p⊕ q) ∧ ¬r
fp = ¬q ∧ ¬r
fpq = ⊥
fp¬q = ¬r

fp¬qr = ⊥
fp¬q¬r = >

f¬p = q ∧ ¬r
f¬pq = ¬r = fp¬q

f¬p¬q = ⊥

The final ROBDD:

f

fp p

q

fp¬q

q

r f¬pq

f¬p

6. [Practicals] [3.5 Points] Construct a ROBDD for the formula

f = (p↔ q) ∧ (r ↔ s)

using variable order r < s < p < q. Use complemented edges and a node for true as the
only constant node. To simplify drawing, you may assume that dangling edges point to the
constant node. Write down all cofactors that you compute to obtain the final result and
mark them in the graph. Solution:

f = (p↔ q) ∧ (r ↔ s)
fr = (p↔ q) ∧ s
frs = (p↔ q)

frsp = q
frspq = >
frsp¬q = ⊥

frs¬p = ¬q = ¬frsp
fr¬s = ⊥

f¬r = (p↔ q) ∧ ¬s
f¬rs = ⊥
f¬r¬s = (p↔ q) = frs

The final ROBDD:

f

fr r

f¬r¬s frs s

frsp p

q

s

f¬r

7. [Practicals] [4 Points]

(a) Construct a Reduced Ordered Binary Decision Diagram (ROBDD) for the formula
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f = (a ∨ b ∨ c) ∧ ¬d

using variable order c < a < d < b. Use complemented edges and a node for true
as the only constant node. To simplify drawing, you may assume that dangling edges
point to the constant node. Write down all cofactors that you compute to obtain the
final result and mark them in the graph.

(b) Construct a Reduced Ordered Binary Decision Diagram (ROBDD) for f with a different
variable order. The ROBDD should result in a smaller ROBDD, w.r.t. the number of
nodes.

Solution:

(a) using variable order c < a < d < b:
f = (a ∨ b ∨ c) ∧ ¬d
fc = ¬d
fca = ¬d
fc¬a = ¬d
⇒a does not have an influence
on the formula.
These cofactors can be skipped.
fcd = ⊥
fc¬d = >

f¬c = (a ∨ b) ∧ ¬d
f¬ca = ¬d = fc
f¬c¬a = b ∧ ¬d

f¬c¬ad = ⊥
f¬c¬a¬d = b

f¬c¬a¬db = >
f¬c¬a¬db = ⊥

f

c

fc a

d d

b

f¬c¬a¬d

f¬c¬a

f¬c

(b) using variable order d < a < b < c:

f = (a ∨ b ∨ c) ∧ ¬d
fd = ⊥
f¬d = a ∨ b ∨ c

f¬da = >
f¬d¬a = b ∨ c

f¬d¬ab = >
f¬d¬a¬b = c

f¬d¬a¬bc = >
f¬d¬a¬b¬c = ⊥

f

d

a

b

c

f¬d¬a¬b

f¬d¬a

f¬d

5.3 Self-Assessment

5.3.1 Binary Decision Diagram
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11. [Self-Assessment]
Give the definition of a Directed Acrylic Graph (DAG). Is the relation between a Binary
Decision Diagrams (BDDs) and DAGs? Solution:

There is no solution available for this question yet.

12. [Self-Assessment]

• Give the definition of a Binary Decision Diagram (BDD).
• Draw an example and label and explain the different elements of the diagram.
• Explain the underlying structure of a BDD and explain, why BDDs are not trees.

Solution:

There is no solution available for this question yet.

5.3.2 Reduced Ordered BDDs

13. [Self-Assessment] In the following list tick all items which can be part of a Reduced Ordered
Binary Decision Diagram (ROBDD).

� Function nodes
� (Complemented) edges
� Self-Loops
� Constant ”true”-node
� Variable pointers

14. [Self-Assessment] Assume that you have already constructed a Reduced Ordered Binary De-
cision Diagram (ROBDD) for a given formula and variable order. What can happen, if you
change the variable order and you draw the ROBDD for the same formula with the new
order again? Solution:

There is no solution available for this question yet.

15. [Self-Assessment] What is the worst-case size of a Reduced Ordered Binary Decision Diagrams
(ROBDDs) with respect to the formula that it represents. What is the advantage of using
a ROBDD to represent a formula compared to using a truth table?

Solution:

There is no solution available for this question yet.

16. [Self-Assessment] How many nodes does a Reduced Ordered Binary Decision Diagrams (ROB-
DDs) for a Boolean formula with n variables have, in worst-case?

� 2n

� O(n2)
� O(2n)
� 2n+1 − 1

� n2
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� infinitely many

17. [Self-Assessment] What is the worst-case size of a Reduced Ordered Binary Decision Diagrams
(ROBDDs) with respect to the formula that it represents. What is the advantage of using
a ROBDD to represent a formula compared to using a truth table?

Solution:

There is no solution available for this question yet.

18. [Self-Assessment] Tick all properties that apply to a Reduced Ordered Binary Decision Dia-
gram (ROBDD).

� A ROBDD is a canonical representation of its respective formula, for any fixed variable
order.

� Since it is reduced, the number of nodes in the ROBDD does not exceed 2n2, where n
is the number of variables.

� The graph of an ROBDD may contain cycles.
� A ROBDD represents a Boolean formula as directed acyclic graph (DAG).
� Every node with two regular outgoing edges has two distinct child nodes.
� No two nodes in an ROBDD represent the same formula.

19. [Self-Assessment] Using BDDs, how can you perform a negation of a formula in constant
time? Solution:

There is no solution available for this question yet.

20. [Self-Assessment] Given a Reduced and Ordered Binary Decision Diagram (ROBDD). Ex-
plain how you can find the propositional logic formula f that is represented by a given
ROBDD? Solution:

There is no solution available for this question yet.

21. [Self-Assessment] In the context of Binary Decision Diagrams (BDDs), what are redundant
nodes? Explain them in a few words and give an example of such a redundancy. Solution:

There is no solution available for this question yet.

22. [Self-Assessment] Given the Binary Decision Diagram (BDD) below. Transform the BDD
into a Reduced Ordered Binary Decision Diagram (ROBDD).

f

a

b

c c

1

b

c

0

c
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Solution:

There is no solution available for this question yet.

23. [Self-Assessment] Given the Binary Decision Diagram (BDD) below. Transform the BDD
into a Reduced Ordered Binary Decision Diagram (ROBDD).

f

a

b

d

c

b

d

c

Solution:

There is no solution available for this question yet.

24. [Self-Assessment] Given the Binary Decision Diagram (BDD) below. Transform the BDD
into a Reduced Ordered Binary Decision Diagram (ROBDD).

f

a

b

c

d

c

b

c

d

c

Solution:

There is no solution available for this question yet.

25. [Self-Assessment] In the context of Binary Decision Diagrams (BDDs), how does the variable
order impact the BDD? Solution:
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There is no solution available for this question yet.

26. [Self-Assessment] Tick all properties that apply to a reduced and ordered BDD (ROBDD).

� If the else-edge of a node is complemented, it may point to the same child node as the
then-edge.

� The size of a BDD is independent on the variable order.
� Logic operations, such as conjunction or disjunction, can be performed in polynomial

time.
� The function of the then-edge and the else-edge of a terminal node is always true.

27. [Self-Assessment] Tick all properties that apply to a reduced and ordered BDD (ROBDD).

� Checks for entailment can be done in constant time.
� Using complemented edges, negation can be performed in constant time.
� Some formulas that can be expressed by truth tables cannot be expressed by BDDs.
� Equivalence checks can be performed in constant time (assuming that the BDDs for

the formula to check are already available).
� The size of a BDD may depend significantly on the variable order, which is hard to

optimize.

28. [Self-Assessment] Consider a Reduced and Ordered Binary Decision Diagram. Explain the
meaning of the terms reduced and ordered in this context. Moreover, for each of these terms,
draw an example of a Binary Decision Diagram that does not have the respective property.
Solution:

There is no solution available for this question yet.

29. [Self-Assessment] Given the Binary Decision Diagram (BDD) below. State the formula f
that is represented by the BDD.
Note: Else-edges are marked with circles. Filled circles represent the complemented attribute.
Dangling edges are assumed to point to the constant node true.

f

a

b

c

d

Solution:

There is no solution available for this question yet.
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30. [Self-Assessment] Given the Binary Decision Diagram (BDD) below. State the formula f
that is represented by the BDD.
Note: Else-edges are marked with circles. Filled circles represent the complemented attribute.
Dangling edges are assumed to point to the constant node true.

f

c

d

b

a

d

Solution:

There is no solution available for this question yet.

31. [Self-Assessment] Given the Binary Decision Diagram (BDD) below. State the formula f
that is represented by the BDD.
Note: Else-edges are marked with circles. Filled circles represent the complemented attribute.
Dangling edges are assumed to point to the constant node true.

f

c

d

b

a

d

Solution:

There is no solution available for this question yet.

32. [Self-Assessment] Given the Binary Decision Diagram (BDD) below, ...

(a) ... check if the following variable assignments evaluate to true or to false.
i. a = >, b = >, c = ⊥
ii. a = ⊥, b = ⊥, c = ⊥
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(b) ... find a propositional formula f , that is represented by the BDD.

Note: Else-edges are marked with circles. Filled circles represent the complemented attribute.
Dangling edges are assumed to point to the constant node true.

f

a

b

c

c

Solution:

There is no solution available for this question yet.

33. [Self-Assessment] Given the Binary Decision Diagram (BDD) below, ...

(a) ... check if the following variable assignments evaluate to true or to false.
i. a = >, b = >, c = ⊥, d = ⊥
ii. a = ⊥, b = ⊥, c = >, d = >

(b) ... find a propositional formula f , that is represented by the BDD.

Note: Else-edges are marked with circles. Filled circles represent the complemented attribute.
Dangling edges are assumed to point to the constant node true.

f

a

b

d

c

Solution:

There is no solution available for this question yet.
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5.3.3 Construction of Reduced Ordered BDDs

34. [Self-Assessment] What is a cofactor of a formula? Given an example of a propositional logic
formula and compute the positive and the negative cofactor for one variable of this formula.
Solution:

There is no solution available for this question yet.

35. [Self-Assessment] Construct a Reduced Ordered Binary Decision Diagram (ROBDD) for the
formula

f = (¬a ∨ b) ∧ (a ∨ b),

using alphabetic variable order. Use complemented edges and a node for true as the only
constant node. To simplify drawing, you may assume that dangling edges point to the con-
stant node. Write down all cofactors that you compute to obtain the final result and mark
them in the graph. Solution:

There is no solution available for this question yet.

36. [Self-Assessment] Construct a Reduced Ordered Binary Decision Diagram (ROBDD) for the
formula

f = (¬x ∨ ¬y) ∧ (x ∧ (y ∨ z)),

using variable order y < z < x. Use complemented edges and a node for true as the only
constant node. To simplify drawing, you may assume that dangling edges point to the con-
stant node. Write down all cofactors that you compute to obtain the final result and mark
them in the graph. Solution:

There is no solution available for this question yet.

37. [Self-Assessment] Construct a Reduced Ordered Binary Decision Diagram (ROBDD) for the
formula

f = (¬x ∧ ¬y) ∨ (x ∧ y),

using variable order z < x < y. Use complemented edges and a node for true as the only
constant node. To simplify drawing, you may assume that dangling edges point to the con-
stant node. Write down all cofactors that you compute to obtain the final result and mark
them in the graph. Solution:

There is no solution available for this question yet.

38. [Self-Assessment] Construct a Reduced Ordered Binary Decision Diagram (ROBDD) for the
formula

f = (¬p ∨ r) ∧ (q ∨ ¬p) ∧ (¬q ∨ p)

using variable order r < q < p. Use complemented edges and a node for true as the only
constant node. To simplify drawing, you may assume that dangling edges point to the con-
stant node. Write down all cofactors that you compute to obtain the final result and mark
them in the graph. Solution:

There is no solution available for this question yet.
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39. [Self-Assessment] Construct a Reduced Ordered Binary Decision Diagram (ROBDD) for the
formula

f = (q ∧ ¬s) ∨ (s ∧ (¬r ∨ p)) ∨ (p ∧ q ∧ r)

using variable order p < q < r < s. Use complemented edges and a node for true as the
only constant node. To simplify drawing, you may assume that dangling edges point to the
constant node. Write down all cofactors that you compute to obtain the final result and
mark them in the graph. Solution:

There is no solution available for this question yet.
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6 Predicate Logic
6.1 Lecture

6.1.1 Predicates and Quantifiers

1. [Lecture] Model the following declarative sentences with predicate logic, as detailed as possi-
ble. Clearly indicate the intended meaning of all function, predicate, and constant symbols
that you use.

(a) Some students like Alice.
(b) Every teacher likes Bob.
(c) Some students like every teacher.
(d) Some students and Bob play a game.
(e) Not every student plays games.
(f) Some teachers play no games.

Solution:

A = {people}

(a) ∃x
(
S(x) ∧ L(x,Alice)

)
S(x) . . . x is a student
L(x, y) . . . x likes y

(b) ∀x
(
T (x)→ L(x,Bob)

)
T (x) . . . x is a teacher
L(x, y) . . . x likes y

(c) ∃x
(
S(x) ∧ ∀y

(
T (y)→ L(x, y)

))
S(x) . . . x is a student
T (x) . . . x is a teacher
L(x, y) . . . x likes y

(d) P (Bob) ∧ ∃x
(
S(x) ∧ P (x)

)
S(x) . . . x is a student
P (x) . . . x plays a game

(e) ¬∀x
(
S(x)→ P (x)

)
S(x) . . . x is a student
P (x) . . . x plays a game

(f) ∃x
(
T (x)→ ¬P (x)

)
T (x) . . . x is a teacher
P (x) . . . x plays a game

2. [Lecture] Model the following declarative sentences with predicate logic, as detailed as possi-
ble. Clearly indicate the intended meaning of all function, predicate, and constant symbols
that you use.

(a) Alice has no sister.
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(b) A person who wears a crown is either a king or a queen.
(c) Not everybody likes everybody.
(d) Everybody loves somebody.

Solution:

A = {people}

(a) ∀x
(
A(x)→ ¬S(x)

)
A(x) . . . x is Alice
S(x) . . . x has a sister

(b) ∀x
(
C(x)→ K(x) ∨Q(x)

)
C(x) . . . x wears a crown
K(x) . . . x is a king
Q(x) . . . x is a queen

(c) ¬∀x∀y
(
L(x, y)

)
L(x, y) . . . x likes y

(d) ∀x∃y
(
L(x, y)

)
L(x, y) . . . x loves y

3. [Lecture] Model the following declarative sentences with predicate logic, as detailed as possi-
ble. Clearly indicate the intended meaning of all function, predicate, and constant symbols
that you use.

(a) The construction side takes a long time, is noisy, and not blocks the sun.
(b) If there is no school, at least one parent of each kid has to take vacation and cannot

got to work.
(c) All students have to take the exam eventually.

Solution:
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(a) x ∧ y ∧ z
x . . . the construction side takes a long time
y . . . the construction side is noisy
z . . . the construction side blocks the sun

(b) ¬a→ ∀x∃y
(
K(x) ∧ P (x, y)→ V (y) ∧ ¬W (y)

)
a . . . there is school
K(x) . . . x is a kid
P (x, y) . . . y is parent of x
V (x) . . . x takes vacation
W (x) . . . x goes to work
A = {people}

(c) ∀
(
S(x)→ E(x)

)
S(x) . . . x is a student
E(x) . . . x takes the exam
A = {people}

4. [Lecture] Model the following declarative sentences with predicate logic, as detailed as possi-
ble. Clearly indicate the intended meaning of all function, predicate, and constant symbols
that you use.

(a) If all kids wear gloves, then all parents will be happy.
(b) All kids love pizza and spaghetti.
(c) All kids are fun, energetic, and cannot sit still.

Solution:

A = {people}

(a) ∀x
(
K(x) ∧G(x)→ ∀y

(
P (y) ∧H(y)

))
K(x) . . . x is a kid
G(x) . . . x wears gloves
P (x) . . . x is a parent
H(x) . . . x is happy

(b) ∀x
(
K(x)→ P (x) ∧ S(x)

)
K(x) . . . x is a kid
P (x) . . . x loves pizza
S(x) . . . x loves spaghetti

(c) ∀x
(
K(x)→ F (x) ∧ E(x) ∧ ¬S(x)

)
K(x) . . . x is a kid
F (x) . . . x is fun
E(x) . . . x is energetic
S(x) . . . x can sit still

5. [Lecture] Consider the following declarative sentence (known as Goldbach’s Conjecture):
”Every even integer greater than 2 is equal to the sum of two prime numbers.”
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Model this sentence with predicate logic, as detailed as possible. Clearly indicate the in-
tended meaning of all function, predicate, and constant symbols that you use. Solution:

A = N
E(x) . . . x is even
G(x) . . . x is greater than 2
P (x) . . . x is prime
∀x(E(x) ∧G(x)) → ∃a, b(P (a) ∧ P (b) ∧ (x = a+ b))

6.1.2 Syntax of Predicate Logic

6. [Lecture] The syntax of predicate logic is defined via 2 types of sorts: terms and formulas.
What are terms and what are formulas? Give examples for both. Solution:

terms: Terms talk about objects, they are elements of the domain: individual objects
like Alice or Bob, variables since they represent objects like x, y, function symbols since
they refer to objects like m(x) or x+ y

formulas: Formulas have a truth value. Each predicate is a formula, e.g. S(x),
P (x), ∀x

(
S(x)→ P (x)

)
7. [Lecture] Give the definition of the syntax of predicate logic. Therefore, give the definition

of terms and formulas. Solution:

• V: Defines the set of variable symbols, e.g., x, y, z.
• F : Defines the set of function symbols, e.g., f, g, h.
• P: Defines the set of predicate symbols, e.g., P,Q,R.

Terms are defined as follows:
• Any variable is a term.
• If c ∈ F is a nullary function, then c is a term.
• If t1, t2, . . . tn are terms and f ∈ F has arity n > 0, then f(t1, t2, . . . tn) is a term.
• Nothing else is a term.

Formulas are defined as follows:
• If P ∈ P is a predicate with arity n > 0 and t1, t2, . . . tn are terms over F , then
P (t1, t2, . . . tn) is a formula.

• If ϕ is a formula, then ¬ϕ is a formula.
• If ϕ and ψ are formulas, then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ) are formulas.
• If ϕ is a formula and x is a variable, then (∀xϕ) and (∃xϕ) are formulas.
• Nothing else is a formula.

8. [Lecture] Draw a syntax tree for the following formula:

∀x
((
P (x, y)→ P (x, x)

)
∨
(
Q(y, z) ∧ ∃y R(x, y, z)

))
Solution:
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∀x

∨

∧

∃y

R

zyx

Q

zy

→

P

yx

P

yx

9. [Lecture] Draw the syntax tree for the following formula:

∀x∃y (P (x, f(y)) ∧Q(y, z)→ R(f(z))).

Solution:

∀x

∀y

→

R

f

z

∧

Q

zy

P

f

y

x

6.1.3 Free and Bound Variables

10. [Lecture] Given the formula

P (x, y) ∨ ∃y∀x
(
Q(x, y) ∧R(y, z)

)
,

construct a syntax tree for ϕ and determine the scope of its quantifiers and which occurrences
of the variables are free and which are bound. Solution:
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∨

∃y

∀x

∧

R

zy

Q

yx

P

yx

Free variables: x, y, z
Bound variables: x, y

11. [Lecture] Given the formula

ϕ = ∀x∃z
(
¬P (x) ∨Q(y, f(z))

)
→

(
∃x P (y) ∧Q(f(x), z)

)
,

construct a syntax tree for ϕ and determine the scope of its quantifiers and which occurrences
of the variables are free and which are bound. Solution:

→

∧

∃x

∧

Q

zf

x

P

y

∀x

∃z

∨

Q

f

z

y

¬

P

x

Free variables: y, z
Bound variables: x, z

6.1.4 Semantics of Predicate Logic

12. [Lecture] Give a model M for the following formula:

ϕ := ∃x∀yP (x, y).

Solution:
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M : A = {a, b}
PM = {(a, a), (a, b)}

13. [Lecture] Consider the formula

ϕ := ∀x∃y(P (x, y) ∧Q(x)).

Give a model the satisfies the formula and a second one that falsifies the formula.
Show using the parse tree why your models satisfy are falsify the formula. Solution:
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∀x

∃y

∧

Q

x

P

yx

∃y

∧

Q

a

P

ya

Subtree: x = a

∧

Q

a

P

aa

Subtree: x = a ∧ y = a
Evaluates M1 to true.
Evaluates M2 to false.

∧

Q

a

P

ba

Subtree: x = a ∧ y = b
Evaluates M1 to true.
Evaluates M2 to false.

∃y

∧

Q

b

P

yb

Subtree: x = b

∧

Q

b

P

ab

Subtree: x = b ∧ y = a
Evaluates M1 to true.
Evaluates M2 to false.

∧

Q

b

P

bb

Subtree: x = b ∧ y = b
Evaluates M1 to true.
Evaluates M2 to false.

M1 : A = {a, b}
P = true
Q = true
M1 |= ϕ

M2 : A = {a, b}
P = true
Q = false
M2 6|= ϕ
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14. [Lecture] Consider the formula

ϕ = ∃x∀y
(
P (x, y)→ (Q(x, y) ∨R(x, y))

)
.

Does the following model M satisfy the formula?
A = {a, b}
PM = {(a, a), (a, b)}
QM = {(a, a), (b, a)}
RM = {(a, a), (b, b)} Solution:
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∃x

∀y

→

∨

R

yx

Q

yx

P

yx

∀y

→

∨

R

yb

Q

yb

P

yb

Subtree: x = b

→

∨

R

ab

Q

ab

P

ab

Subtree: x = b ∧ y = a

→

∨

R

bb

Q

bb

P

bb

Subtree: x = b ∧ y = b
The model M satisfies the formula.

15. [Lecture] Give the definition of a model in predicate logic. Discuss what needs to be defined
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in a model of a predicate logic formula. Give an example for each data that could be con-
tained in a model. Solution:

Definition - Model in Predicate Logic. A model M consists of the following set of
data:

• A non-empty set A, the universe/domain of concrete values;
• for each nullary function symbol f ∈ F , a concrete element fM ∈ A;
• for each nullary predicate symbol P ∈ P, a truth value;
• for each function symbol f ∈ F with arity n > 0 a concrete function fM : An → A;
• for each predicate smybol P ∈ P with arity n > 0: subset PM ⊆ An;
• for any free variable var: a lookup-table t : var → A.

16. [Lecture] For the following formula in Predicate Logic, find a model that satisfies the formula
and one that does not. Draw a syntax tree and state all free variables while solving this
task.

∀x∃y
(
P (f(y)) ∧ P (x)

)
→ Q(f(f(y)))

Solution:

→

Q

f

f

y

∀x

∃y

∧

P

x

P

f

y

Free variables: y

M1 : A = {a, b}
PM1 = true
QM1 = true
M1 |= ϕ

M2 : A = {a, b}
PM2 = true
QM2 = false
M2 6|= ϕ
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6.2 Self-Assessment

6.2.1 Predicates and Quantifiers

17. [Self-Assessment] Consider the following declarative sentences:
”Every person who has the same parents as John Doe and is different from John Doe himself
is a sibling of John Doe.”
Model this sentence with predicate logic, as detailed as possible. Clearly indicate the in-
tended meaning of all function, predicate, and constant symbols that you use.
Also, model the same sentence in propositional logic, as detailed as possible. Clearly indicate
the intended meaning of each propositional variable you use.

18. [Self-Assessment] Translate the following sentences into predicate logic. Be as precise as
possible. Give the meaning of any function and predicate symbols you use.

(a) Nobody knows everybody.
(b) All birds can fly, except for penguins and ostrichs.
(c) Not all birds can fly, but some birds can fly.
(d) All kids are cute and quite if and only if they are sleeping

Solution:

There is no solution available for this question yet.

19. [Self-Assessment] Translate the following sentences into predicate logic. Be as precise as
possible. Give the meaning of any function and predicate symbols you use.

(a) Every even integer greater than 2 is equal to the sum of two prime numbers.
(b) Every person who has the same parents as John Doe and is different from John Doe

himself is a sibling of John Doe.

Solution:

There is no solution available for this question yet.

20. [Self-Assessment] Consider the following declarative sentence:
“For every natural number it holds that it is prime if and only if there is no smaller natural
number, except for 1, that divides it.”
Model this sentence with predicate logic, as detailed as possible. Clearly indicate the in-
tended meaning of all function, predicate, and constant symbols that you use.
Also, model the same sentence in propositional logic, as detailed as possible. Clearly indicate
the intended meaning of each propositional variable you use. Solution:

There is no solution available for this question yet.

21. [Self-Assessment]
“For all triangles it holds it is a scalene triangle iff all its sides have different lengths and
all its angles have different measure.”
Model this sentence with predicate logic, as detailed as possible. Clearly indicate the in-
tended meaning of all function, predicate, and constant symbols that you use. Solution:

There is no solution available for this question yet.
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22. [Self-Assessment]
“Everyone gets a break once in a while, but the break cannot last forever”
Model this sentence with predicate logic, as detailed as possible. Clearly indicate the in-
tended meaning of all function, predicate, and constant symbols that you use.
Also, model the same sentence in propositional logic, as detailed as possible. Clearly indicate
the intended meaning of each propositional variable you use. Solution:

There is no solution available for this question yet.

23. [Self-Assessment] Model the following sentences with predicate logic, as detailed as possible.
Clearly indicate the intended meaning of all function, predicate, and constant symbols that
you use.

(a) Every integer is greater or equal to one.
(b) For any two integers, their sum is smaller than their product

Solution:

There is no solution available for this question yet.

6.2.2 Syntax of Predicate Logic

24. [Self-Assessment] Given is the following formula in predicate logic

ϕ = ∀x∃y
((
Q(x, y) ∧ P (x, y)

)
→

(
R(y, x) ∧ P (x, y)

))
.

Draw the syntax tree for ϕ. Solution:

There is no solution available for this question yet.

25. [Self-Assessment] Given is the following formula in predicate logic

ϕ = ∃x∀y
((
P (x, y)→ Q(x, y)

)
∨
(
P (y, x)→ R(x, y)

))
.

Draw the syntax tree for ϕ. Solution:

There is no solution available for this question yet.

6.2.3 Free and Bound Variables

26. [Self-Assessment] in the context of defining the syntax of predicate logic:

(a) What is the scope of a quantifier?
(b) What is the difference between free and bound variables?

Given an example. Solution:

There is no solution available for this question yet.
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27. [Self-Assessment] In the context of Predicate Logic, give a definition of substitution of vari-
ables. Solution:

There is no solution available for this question yet.

28. [Self-Assessment] What does it mean to substitute a term t for a variable x in a predicate
logic formula? Which rules to you have to consider when performing substitution? Give an
example. Solution:

There is no solution available for this question yet.

29. [Self-Assessment] Consider the following formula.

ϕ := ∀y
(
P (x) ∧Q(y)

)
∨
(
R(y) ∧Q(x)

)
(a) Compute ϕ[f(x)/x].
(b) Compute ϕ[f(y)/x].
(c) Compute ϕ[f(z)/x].

Solution:

There is no solution available for this question yet.

30. [Self-Assessment] Consider the following formula.

ϕ := ∀y
(
P (x) ∧Q(y)

)
→ ∃x

(
R(y) ∧Q(x)

)
(a) Compute ϕ[f(y)/x].
(b) Compute ϕ[f(x)/y].
(c) Compute ϕ[k/z].
(d) Compute ϕ[x/z].

Solution:

There is no solution available for this question yet.

31. [Self-Assessment] Given the formula

ϕ = ∀x∃z
(
¬P (x) ∨Q(y, f(z))

)
→

(
¬∃x P (y) ∧Q(f(x), z)

)
.

(a) Compute ϕ[f(y)/x].
(b) Compute ϕ[f(x)/y].
(c) Compute ϕ[k/z].
(d) Compute ϕ[x/z].

Solution:

There is no solution available for this question yet.
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6.2.4 Semantics of Predicate Logic

32. [Self-Assessment] In the following list, tick all items that are required for a complete model
of a formula ϕ in predicate logic.

� A non-empty, possibly infinite set of values for variables and functions.
� A concrete value for every bound variable in ϕ.
� A concrete value for free bound variable in ϕ.
� A definition for each predicate in ϕ, detailing for which values/tuples the predicate

returns true.
� A definition for each function in ϕ, detailing for which values/tuples the predicate

returns true.

Solution:

There is no solution available for this question yet.

33. [Self-Assessment] (a) Define a model for a formula in propositional logic?
(b) Define a model for a formula in predicate logic?
For both, state all components that the model needs to define. Solution:

There is no solution available for this question yet.

34. [Self-Assessment] Given is the following formula in predicate logic

ϕ = ∀x∃y
((
Q(x, y) ∧ P (x, y)

)
→

(
R(y, x) ∧ P (x, y)

))
and the model M:

• A = {a, b}
• PM = {(m, a)|m ∈ A}
• QM = {(b,m)|m ∈ A}
• RM = {(a, b), (b, a), (b, b)}

Does the model M satisfy the formula ϕ? Explain your answer by drawing a syntax tree
and evaluate the model M with the help of this syntax tree. Solution:

There is no solution available for this question yet.

35. [Self-Assessment] Given is the following formula in predicate logic

ϕ = ∃x∀y
((
P (x, y)→ Q(x, y)

)
∨
(
P (y, x)→ R(x, y)

))
and the model M:

• A = {a, b}
• PM = {(a, b), (b, b), (b, a)}
• QM = {(a, b), (a, b)}
• RM = {(a, b), (a, b)}
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Does the model M satisfy the formula ϕ? Explain your answer by drawing a syntax tree
and evaluate the model M with the help of this syntax tree. Solution:

There is no solution available for this question yet.

36. [Self-Assessment] For the formula below, find one model that satisfies the formula, and one
model that does not satisfy the formula. Explain your answer by drawing a syntax tree
and evaluate the model M with the help of this syntax tree.

(P (x) ∧Q(f(x))) ∨ (¬P (x) ∧ ¬Q(f(x))

Solution:

There is no solution available for this question yet.

37. [Self-Assessment] For the formula below, find one model that satisfies the formula, and one
model that does not satisfy the formula. Explain your answer by drawing a syntax tree
and evaluate the model M with the help of this syntax tree.

¬∀x((P (x)→ P (y)) ∧ P (x))

Solution:

There is no solution available for this question yet.

38. [Self-Assessment] For the formula below, find one model that satisfies the formula, and one
model that does not satisfy the formula. Explain your answer by drawing a syntax tree
and evaluate the model M with the help of this syntax tree.

∀x∃y(P (f(x), y) ∧ ¬P (x, f(y)))

Solution:

There is no solution available for this question yet.

39. [Self-Assessment] For each of the formulas in Predicate Logic below, find a model that satisfies
the formula and one that does not. Draw a syntax tree and state all free variables while
solving this task.

(a) ¬∀x((P (x)→ P (y)) ∧ P (x))
(b) ∀x∃y(P (x, y) ∧ ¬P (f(x), f(y)))

Solution:

There is no solution available for this question yet.
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7 Natural Deduction for Predicate Logic
7.1 Lecture
For each of the following sequents, either provide a natural deduction proof, or a counter-example
that proves the sequent invalid.

For proofs, clearly indicate which rule, and what assumptions/premises/
intermediate results you are using in each step. Also clearly indicate the scope of any boxes you use.

For counterexamples, give a complete model. Show that the model satisfies the premise(s) of the
sequent in question, but does not satisfy the respective conclusion.

7.1.1 Proof Rules for Universal Quantification

1. [Lecture] ∀x
(
P (x)→ Q(x)

)
,∀x P (x) ` ∀x Q(x). Solution:

1. ∀x
(
P (x)→ Q(x)

)
prem.

2. ∀x P (x) prem.
3.x0 P (x0)→ Q(x0) ∀e 1
4. P (x0) ∀e 2
5. Q(x0) → e 3,4
6. ∀x Q(x) ∀i 3-5

2. [Lecture] ∀x P (x) ∧ ∀x (P (y)→ Q(x)) ` Q(z) Solution:

1. ∀x P (x) ∧ ∀x (P (y)→ Q(x)) prem.
2. ∀x P (x) ∧e1 1
3. ∀x (P (y)→ Q(x)) ∧e2 1
4. P (y) ∀e 2
5. P (y)→ Q(z) ∀e 3
6. Q(z) → e 5,4

3. [Lecture] ∀x P (x) ∨ ∀x Q(x) ` ∀y (P (y) ∨Q(y)) Solution:

Page 106 of 141



7.1 Lecture 7 NATURAL DEDUCTION FOR PREDICATE LOGIC

1. ∀x P (x) ∨ ∀x Q(x) prem.
2. ∀x P (x) ass.
3. t P (t) ∀e 2
4. P (t) ∨Q(t) ∨i1 3
5. ∀y (P (y) ∨Q(y)) ∀i 3-4
6. ∀x Q(x) ass.
7. s Q(s) ∀e 6
8. P (s) ∨Q(s) ∨i2 7
9. ∀y (P (y) ∨Q(y)) ∀i 7-8

10. ∀y (P (y) ∨Q(y)) → e 1,2-5,6-9

7.1.2 Proof Rules for Existential Quantification

4. [Lecture] ∀x (P (x)→ Q(y)),∀y (P (y) ∧R(x)) ` ∃x Q(x)) Solution:

1. ∀x (P (x)→ Q(y)) prem.
2. ∀y (P (y) ∧R(x)) prem.
3. P (t)→ Q(y) ∀e 1
4. P (t) ∧R(x) ∀e 2
5. P (t) ∧e1 4
6. Q(y) → e 3
7. ∃x Q(x) ∃i 6

5. [Lecture] ∀a∀b (P (a) ∧Q(b)) ` ∀a∃b (P (a) ∨Q(b)) Solution:

1. ∀a∀b (P (a) ∧Q(b)) prem.
2. t ∀b (P (s) ∧Q(b)) ∀e 1
3. P (s) ∧Q(t) ∀e 2
4. P (s) ∧e1 3
5. P (s) ∨Q(t) ∨i1 4
6. ∃b (P (s) ∨Q(b)) ∃i 5
7. ∀a∃b (P (a) ∨Q(b)) ∀i 2-6

6. [Lecture] Explain the ∃-elimination rule (∃e). Why does this rule require a box and what
does it mean that x0 is fresh? Solution:

There is no solution available for this question yet.

7. [Lecture] ∃x ¬P (x),∀x ¬Q(x) ` ∃x (¬P (x) ∧ ¬Q(x)) Solution:
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1. ∃x ¬P (x) prem.
2. ∀x ¬Q(x) prem.
3. x0 ¬P (x0) ass.
4. ¬Q(x0) ∀e 2
5. ¬P (x0) ∧ ¬Q(x0) ∧i 3,4
6. ∃x (¬P (x) ∧ ¬Q(x)) ∃i 5
7. ∃x (¬P (x) ∧ ¬Q(x)) ∃e 3-6

8. [Lecture] Consider the following natural deduction proof for the sequent

∀x (P (x)→ Q(x)), ∃x P (x) ` ∀xQ(x).

Is the proof correct? If not, explain the error in the proof and either show how to correctly
prove the sequent, or give a counterexample that proves the sequent invalid.

1. ∀x (P (x)→ Q(x)) prem.
2. ∃x P (x) prem.
3. x0

4. P (x0) ass.
5. P (x0)→ Q(x0) ∀e 1
6. Q(x0) → e, 4,5
7. ∀x Q(x) ∀i 4-6
8. ∀x Q(x) ∃e 2,3-7

Solution:

This sequent is not provable.
Model M:

A = {a, b}
PM = {a}
QM = {a}

M |= ∀x (P (x)→ Q(x)), ∃x P (x)
M 2 ∀xQ(x)

9. [Lecture] ∃x (P (x)→ Q(y)), ∀x P (x) ` Q(y) Solution:

1. ∃x (P (x)→ Q(y)) prem.
2. ∀x P (x) prem.
3. x0 P (x0)→ Q(y) ass.
4. P (x0) ∀e 2
5. Q(y) → e 3,4
6. Q(y) ∃e 3-5
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7.1.3 Quantifier Equivalences

10. [Lecture] ∀x ¬(P (x) ∧Q(x)) ` ¬∃x (P (x) ∧Q(x)) Solution:

1. ∀x ¬(P (x) ∧Q(x)) prem.
2. ∃x (P (x) ∧Q(x)) ass.
3. t P (t) ∧Q(t) ass.
4. ¬P (t) ∧Q(t) ∀e 1
5. ⊥ ¬e 3,4
6. ⊥ ∃e 3-5
7. ¬∃x (P (x) ∧Q(x)) ¬i 2-6

11. [Lecture] ¬∃x (P (x) ∧Q(x)) ` ∀x ¬(P (x) ∧Q(x)) Solution:

1. ¬∃x (P (x) ∧Q(x)) prem.
2. t

3. P (t) ∧Q(t) ass.
4. ∃x ¬(P (x) ∧Q(x)) ∃i 3
5. ⊥ ¬e 1,4
6. ¬P (t) ∧Q(t) ¬i 3-5
7. ∀x ¬(P (x) ∧Q(x)) ∀i 2-6

7.1.4 Counterexamples

12. [Lecture] ∃x ¬P (x),∃x ¬Q(x) ` ∃x (¬P (x) ∧ ¬Q(x)) Solution:

This sequent is not provable.
Model M:

A = {a, b}
PM = {a}
QM = {b}

M |= ∃x ¬P (x),∃x ¬Q(x)
M 2 ∃x (¬P (x) ∧ ¬Q(x))

13. [Lecture] ∃x (P (x)→ Q(y)), ∃x P (x) ` Q(y) Solution:
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This sequent is not provable.
Model M:

A = {a, b}
PM = {a}
QM = {a}
y ← b

M |= ∃x (P (x)→ Q(y)), ∃x P (x)
M 2 Q(y)

7.2 Practicals
For each of the following sequents, either provide a natural deduction proof, or a counter-example
that proves the sequent invalid.

For proofs, clearly indicate which rule, and what assumptions/premises/
intermediate results you are using in each step. Also clearly indicate the scope of any boxes you use.

For counterexamples, give a complete model. Show that the model satisfies the premise(s) of the
sequent in question, but does not satisfy the respective conclusion.

1. [Practicals] [1 Point] (∀x (¬A(x)) ∨ (∃x (B(x)) ` ∀x (¬A(x) ∨B(x)) Solution:

There is no solution available for this question yet.

2. [Practicals] [1 Point] (∀x (¬A(x)) ∨ (∃x (B(x)) ` ∃x (¬A(x) ∨B(x)) Solution:

There is no solution available for this question yet.

3. [Practicals] [1 Point] ∃b (a→ B(b)) ` a→ ∃b B(b) Solution:

There is no solution available for this question yet.

4. [Practicals] [1 Point] ∃x (S(x)→ T (x)),¬T (z) ∧ ¬T (y) ` ¬S(y) Solution:

There is no solution available for this question yet.

5. [Practicals] [1 Point] ∀r U(r) ∧ ∀r (S(r) → T (r)) ` ∃r ¬T (x) → ∃r(¬S(r) ∧ U(r))
Solution:

There is no solution available for this question yet.

6. [Practicals] [1 Point] ∃a (P (a)∨Q(a)), ∃a P (a)→ R(c), ∃b Q(b)→ R(c) ` R(c)
Solution:

There is no solution available for this question yet.

7. [Practicals] [1 Point] ∃x P (x)→ ∃x Q(x) ` ∃x (P (x)→ Q(x)) Solution:
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There is no solution available for this question yet.

7.3 Self-Assessment
For each of the following sequents, either provide a natural deduction proof, or a counter-example
that proves the sequent invalid.

For proofs, clearly indicate which rule, and what assumptions/premises/
intermediate results you are using in each step. Also clearly indicate the scope of any boxes you use.

For counterexamples, give a complete model. Show that the model satisfies the premise(s) of the
sequent in question, but does not satisfy the respective conclusion.

7.3.1 Proof Rules for Universal Quantification

14. [Self-Assessment] Explain the ∀-introduction rule and the ∀-elimination rule. Explain why
one rule needs a box while the other one does not. What does it mean that x0 needs to be
fresh? Solution:

There is no solution available for this question yet.

15. [Self-Assessment] ∀x (P (x) ∧Q(x)) ` ∀x ((Q(x) ∨R(x)) ∧ (R(x) ∨ P (x))) Solution:

There is no solution available for this question yet.

16. [Self-Assessment] ∀x (P (x) ∨Q(x)), ∀x (¬P (x)) ` ∀x (Q(x)) Solution:

There is no solution available for this question yet.

7.3.2 Proof Rules for Existential Quantification

17. [Self-Assessment] ∃x (Q(x) → R(x)), ∃x (P (x) ∧Q(x)) ` ∃x (P (x) ∧ R(x)) Solu-
tion:

There is no solution available for this question yet.

18. [Self-Assessment] ∀x (Q(x) → R(x)), ∃x (P (x) ∧Q(x)) ` ∃x (P (x) ∧ R(x)) Solu-
tion:

There is no solution available for this question yet.

7.3.3 Quantifier Equivalences

19. [Self-Assessment] ¬∃x∀y (P (x) ∧Q(y)) ` ∀x∃y ¬(P (x) ∧Q(y)) Solution:

There is no solution available for this question yet.

20. [Self-Assessment] ∀x∃y ¬(P (x) ∧Q(y)) ` ¬∃x∀y (P (x) ∧Q(y)) Solution:

There is no solution available for this question yet.
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7.3.4 Counterexamples

21. [Self-Assessment] ¬∃x ¬P (x) ` ∀x ¬P (x) Solution:

There is no solution available for this question yet.

7.3.5 Mixed Examples

22. [Self-Assessment] ∀x(P (x) ∨ Q(y)),∀x(P (x) → R(z)),∀y(Q(y) → R(z)) ` R(z) So-
lution:

There is no solution available for this question yet.

23. [Self-Assessment] ∃y∀x (P (x, y)) ` ∀x∃y (P (x, y)) Solution:

There is no solution available for this question yet.

24. [Self-Assessment] ∃a∀b (S(b, a) ∧ T (b, a)) ` ∀b∀a (S(b, a) ∧ T (b, a)) Solution:

There is no solution available for this question yet.

25. [Self-Assessment] P (y)→ ∀xQ(x), ∃x¬Q(x) ` ∃x¬P (x) Solution:

There is no solution available for this question yet.

26. [Self-Assessment] Consider the following natural deduction proof for the sequent

∃x ¬P (x) ` ¬∀x P (x).

Is the proof correct? If not, explain the error in the proof and either show how to correctly
prove the sequent, or give a counterexample that proves the sequent invalid.

1. ∃x ¬P (x) prem.
2. ∀x P (x) ass.
3. P (x0) ∀e 2
4. ∃x P (x) ∃i 3
5. ⊥ ¬e 1,4
6. ¬∀x P (x) ¬e 2-5

Solution:

There is no solution available for this question yet.

27. [Self-Assessment] Consider the following natural deduction proof for the sequent

∃x P (x) ∨ ∃x Q(x) ` ∃x (P (x) ∨Q(x)).

Is the proof correct? If not, explain the error in the proof and either show how to correctly
prove the sequent, or give a counterexample that proves the sequent invalid.
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1. ∃x P (x) ∨ ∃x Q(x) prem.
2. ∃x P (x) ass.
3. x0 P (x0) ass.
4. P (x0) ∨Q(x0) ∨i1 3
5. ∃x (P (x) ∨Q(x)) ∃e 2,3-4
6. ∃x Q(x) ass.
7. x0 Q(x0) ass.
8. P (x0) ∨Q(x0) ∨i2 7
9. ∃x (P (x) ∨Q(x)) ∃e 6,7-8

10. ∃x (P (x) ∨Q(x)) ∨e 1,2-5,6-9

Solution:

There is no solution available for this question yet.

28. [Self-Assessment] ∀x∃y (P (x)→ Q(y)), P (s) ` ∃x∀y (¬P (x) ∨Q(y)) Solution:

This sequent is not provable.
Model M:

A = {a, b}
PM = {a, b}
QM = {a}

M |= ∀x∃y (P (x)→ Q(y)), P (s)
M 2 ∃x∀y (¬P (x) ∨Q(y))
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8 Transition Systems
8.1 Lecture

8.1.1 Transition Systems

1. [Lecture] Draw the graph for a transition system T with: S = {s1, s2, s3, s4},
S0 = {s2},
R = {{s1, s2}, {s1, s1}, {s2, s4}, {s2, s3}, {s3, s1}, {s4, s2}, {s4, s3}}, Solution:

s2

s1

s4

s3

2. [Lecture] Consider the example of an elevator. Initially, the elevator is in the ground floor.
From the ground floor, it can either go basement, stay there for a while, and then go back
to the ground floor, or it can go from the ground floor to the second floor, stay there for
a while, and go back to the ground floor. While traveling between ground floor to second
floor, the elevator passes the first floor, but it cannot stop there.
Model this elevator as transition system.

Solution:
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We use the following states:
• sg indicates that the elevator is on the ground floor.
• sb indicates that the elevator is in the basement.
• ss indicates that the elevator is on the second floor.
• sf indicates that the elevator is passing the first floor.

The transition system is then given by: T = (S, S0, R) with S = {sg, sb, ss, sf}, S0 =
{sg}, R = {(sg, sg), (sg, sb), (sb, sb), (sb, sg), (sg, sf ), (sf , ss), (ss, ss), (ss, sf ), (sf , sg)}

sg

sb

sf

ss

8.1.2 Symbolic Encoding

Symbolic Representation of States

3. [Lecture] Given a state space of size |S| = 24 = 16, give the symbolic encoding for the
following states: (a) s7, (b) s15, and (c) s10. Solution:

For the symbolic encoding we need 4 Boolean variables, {v3, . . . , v0}. Let v3 be the
most significant bit, and v0 the least significant bit.

(a) s7 = ¬v3 ∧ v2 ∧ v1 ∧ v0
(b) s15 = v3 ∧ v2 ∧ v1 ∧ v0
(c) s10 = v3 ∧ ¬v2 ∧ v1 ∧ ¬v0

4. [Lecture] Given is the set of states S = {s0, . . . , s7}. Find formulas in propositional logic
that symbolically represent the sets A = {s7, s6, s3, s2}, B = {s1, s3, s5, s7}, and C =
{s7, s6, s0, s1}. Solution:
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A = {s7, s6, s3, s2} = (v2 ∧ v1 ∧ v0) ∨ (v2 ∧ v1 ∧ ¬v0) ∨ (¬v2 ∧ v1 ∧ v0) ∨ (¬v2 ∧ v1 ∧ ¬v0)
= v1

B = {s1, s3, s5, s7} = (¬v2 ∧ ¬v1 ∧ v0) ∨ (¬v2 ∧ v1 ∧ v0) ∨ (v2 ∧ ¬v1 ∧ v0) ∨ (v2 ∧ v1 ∧ v0)
= v0

C = {s7, s6, s0, s1} = (v2 ∧ v1 ∧ v0)∨ (v2 ∧ v1 ∧¬v0)∨ (¬v2 ∧¬v1 ∧¬v0)∨ (¬v2 ∧¬v1 ∧ v0)
= (v2 ∧ v1) ∨ (¬v2 ∧ ¬v1)

Symbolic Representation of the Transition Relation

5. [Lecture] Find a symbolic encoding for the transition relation of the following transition
system and simplify your formulas. Use a binary encoding to encode the states, e.g., encode
the state s2 with the formula v1 ∧ ¬v0.

s0 s1

s2s3

Solution:

Using the variables v1 and v0, we can define the transition relation using the following
formula:

¬v1 ∧ ¬v0 ∧ (¬v′1 ∧ ¬v′0 ∨ v′1 ∧ ¬v′0) ∨
¬v1 ∧ v0 ∧ v′1 ∧ v′0 ∨

v1 ∧ v0 ∧ (¬v′1 ∧ v′0 ∨ ¬v′1 ∧ ¬v′0 ∨ v′1 ∧ ¬v′0)

We can further simplify the formula to:

¬v1 ∧ ¬v0 ∧ ¬v′0 ∨
¬v1 ∧ v0 ∧ v′1 ∧ v′0 ∨

v1 ∧ v0 ∧ (¬v′1 ∧ v′0 ∨ ¬v′0)

6. [Lecture] Find a symbolic encoding for the transition relation of the following transition
system and simplify your formulas. Use a binary encoding to encode the states, e.g., encode
the state s2 with the formula v1 ∧ ¬v0.
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s0 s1

s2s3

Solution:

Using the variables v1 and v0, we can define the transition relation using the following
formula:

¬v1 ∧ ¬v0 ∧ (¬v′1 ∧ ¬v′0 ∨ ¬v′1 ∧ v′0 ∨ v′1 ∧ ¬v′0 ∨ v′1 ∧ v′0) ∨
¬v1 ∧ v0 ∧ (¬v′1 ∧ v′0 ∨ v′1 ∧ ¬v′0 ∨ v′1 ∧ v′0) ∨
v1 ∧ ¬v0 ∧ (¬v′1 ∧ ¬v′0 ∨ ¬v′1 ∧ v′0 ∨ v′1 ∧ v′0) ∨

v1 ∧ v0 ∧ (¬v′1 ∧ ¬v′0 ∨ ¬v′1 ∧ v′0 ∨ v′1 ∧ ¬v′0 ∨ v′1 ∧ v′0)

We can further simplify the formula to:

¬v1 ∧ ¬v0∨
¬v1 ∧ v0 ∧ (v′0 ∨ v′1 ∧ ¬v′0) ∨
v1 ∧ ¬v0 ∧ (¬v′1 ∨ v′1 ∧ v′0) ∨

v1 ∧ v0

Symbolic Encoding and Set Operations of Arbitrary Sets

7. [Lecture] Consider the domain A = {Spain, France, Italy,Germany} and the two different
symbolic encodings for A given below. Which one gives a shorter symbolic representation
for the set B = {France,Germany}? Illustrate your answer by giving the representing
formulas for B in both encodings.

Encoding 1
Element v1 v0
Spain 0 0
France 1 0
Italy 0 1
Germany 1 1

Encoding 2
Element v1 v0
Spain 0 0
France 1 0
Italy 1 1
Germany 0 1

Solution:

Using encoding 1, we end up in the following formula:
b = v1

Using encoding 2, we end up in the following formula:
b = (v1 ∧ ¬v0) ∨ (¬v1 ∧ v0)

Encoding 1 gives a shorter symbolic representation for the set B = {France,Germany}.
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8. [Lecture] Find a symbolic binary encoding for X = {0, 1, . . . , 31}. Use it to find formulas
that symbolically represent the sets A and B and simplify the formulas:

• A = {12, 13, 14, 15, 28, 29, 30, 31}
• B = {x ∈ X | 0 ≤ x ≤ 15}

Furthermore, give the formulas representing the sets C = A∩B and D = A∪B. Solution:

We use 5 Boolean variables, {v4, . . . , v0}, for the encoding.

A = (v2 ∧ v3)
B = ¬v4

8.2 Self-Assessment

8.2.1 Transition Systems

9. [Self-Assessment] Draw the graph for a transition system T with:
S = {s0, s1, s2},
S0 = {s0, s1},
R = {{s0, s0}, {s0, s1}, {s0, s2}, {s1, s0}, {s1, s1}, {s1, s2}, {s2, s0}, {s2, s1}, {s2, s2}}. Solu-
tion:

There is no solution available for this question yet.

10. [Self-Assessment]
Consider the example of a controller for a lamp.
Initially the light is off. Pressing the button once turns on the light and the light glows
white. From this state, any short-lasting pressure of the button causes the light to switch
its color randomly between white, red, green, blue, and yellow. At any state, pressing the
button for a longer time turns the light off.
Model the lamp controller as transition system. Solution:

There is no solution available for this question yet.

8.2.2 Symbolic Encoding

Symbolic Representation of States

11. [Self-Assessment] Given a state space of size |S| = 24 = 16. Give the symbolic encoding for
the following states: (a) s4, (b) s9, and (c) s13. Solution:

There is no solution available for this question yet.

12. [Self-Assessment] Given is the set of states S = {s0, . . . , s7}. Find formulas in proposi-
tional logic that symbolically represent the sets A = {s0, s2, s4, s6}, B = {s0, s1, s2, s3}, and
C = {s7, s1}. Solution:

There is no solution available for this question yet.

Symbolic Representation of the Transition Relation
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13. [Self-Assessment] Find a symbolic encoding for the set of initial states and the transition
relation of the following transition system and simplify your formulas. Use a binary encoding
to encode the states, e.g., encode the state s2 with the formula v1 ∧ ¬v0.

s0 s1

s2s3

Solution:

There is no solution available for this question yet.

14. [Self-Assessment] Find a symbolic encoding for the set of initial states and the transition
relation of the following transition system and simplify your formulas. Use a binary encoding
to encode the states, e.g., encode the state s2 with the formula v1 ∧ ¬v0.

s0 s1

s2s3

Solution:

There is no solution available for this question yet.

15. [Self-Assessment] Find a symbolic encoding for the set of initial states and the transition
relation of the following transition system and simplify your formulas. Use a binary encoding
to encode the states, e.g., encode the state s2 with the formula v1 ∧ ¬v0.

s0 s1

s2s3
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Solution:

There is no solution available for this question yet.

16. [Self-Assessment] Define the transition system from the following symbolically encoded tran-
sition relations and draw the corresponding graph:

(v1 ∧ v0 ∧ ¬v′1 ∧ ¬v′0) ∨
(¬v1 ∧ v0 ∧ ¬v′1 ∧ v′0) ∨

(v1 ∧ v0 ∧ v′1 ∧ v′0)

Solution:

There is no solution available for this question yet.

17. [Self-Assessment] Define the transition system from the following symbolically encoded tran-
sition relations and draw the corresponding graph:

(¬v1 ∧ ¬v0 ∧ v′1 ∧ v′0) ∨
(¬v1 ∧ v0 ∧ ¬v′1 ∧ ¬v′0) ∨

(¬v1 ∧ ¬v0 ∧ ¬v′1 ∧ ¬v′0)

Solution:

There is no solution available for this question yet.

Symbolic Encoding and Set Operations of Arbitrary Sets

18. [Self-Assessment] What is the main advantage of symbolic set operations over non-symbolic
operations that enumerate all set elements explicitly? Solution:

There is no solution available for this question yet.

19. [Self-Assessment] Listed are the participants of a seminar as well as their choice of snacks.
Find a symbolic encodings for the participants. For for this encoding, give the symbolic
representation of the set B of all participants that ordered bananas, and the set C of all
participants that ordered cake.

Name Snack
Alice banana
Bob cake
Carl banana
David banana
Eve cake
Frank cake
Greg orange
Hank cake
Solution:

There is no solution available for this question yet.

20. [Self-Assessment] Given a state space of size |S| = 2048, find a symbolic binary encoding for
this state space and compute the characteristic function for the sets of states

B = {s0, s1, s2, ..., s1023} and C = {s512, s513, , s514, ..., s1535.}
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Then compute the characteristic function for the sets D = B∪C and E = B \C. If possible,
simplify the formulas. Solution:

There is no solution available for this question yet.

21. [Self-Assessment] The following table shows eight students and their means of transportation.
Find a symbolic encodings representing the list of students. For this encoding, give the
symbolic representation of the set B of all students that go by bike, and the set C of all
students that go by car.

Name Transportation
Alice Car
Bob Bike
Carl Tram
David Bike
Eve Tram
Frank Bike
Greg Tram
Hank Bike

Solution:

There is no solution available for this question yet.

22. [Self-Assessment] Consider the domain A = {Spain, France, Italy,Germany} and the two
different symbolic encodings for A given below. Which one gives a shorter symbolic repre-
sentation for the set B = {France, Italy}? Illustrate your answer by giving the representing
formulas for B in both encodings.

Encoding 1
Element v1 v0
Spain 0 0
France 1 0
Italy 0 1
Germany 1 1

Encoding 2
Element v1 v0
Spain 0 0
France 1 0
Italy 1 1
Germany 0 1

Solution:

There is no solution available for this question yet.

23. [Self-Assessment] Consider the following set operations and relations between two sets X
and Y , and an element a:

(a) Union: X ∪ Y
(b) Intersection: X ∩ Y
(c) Set Difference: X \ Y
(d) Containment: a ∈ X?
(e) Subset: X ⊆ Y ?
(f) Strict Subset: X ⊂ Y ?
(g) Emptiness: X = ∅?
(h) Equality: X = Y ?

Let x and y be the symbolic representations of X and Y respectively, and let α be the
symbolic encoding of element a. For each of the following items, state which of the above
operations is performed, or which of the above questions is answered. Write the letters of
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the corresponding operation/question into the boxes of the items below. Note that some
of the items below do not perform any of the above operations or answer any of the above
questions. Put a “–” in the box of these items. Also note that some of the items below might
do the same computation or answer the same question.

� ¬x ∨ y

� x ∧ y

� x ≡ >?

� x ≡ y?

� (x→ y) ∧ (y → x)?

� x ≡ ⊥?

� y ∧ ¬x

� x→ ⊥?

� α |= x?

� α |= ¬x?

� ¬α |= x?

� x→ α?

� y → x?

� x→ y?

� (x→ y) ∧ (x 6≡ y)?

Solution:

There is no solution available for this question yet.

24. [Self-Assessment] Find a symbolic binary encoding for X = {0, 1, . . . , 31}. Use it to compute
formulas in propositional logic that symbolically represent the following sets.

• B = {4, 5, 12, 13, 20, 21, 28, 29}
• C = {1, 2, 13, 14}

Compute the characteristic functions of the following sets by symbolic operations, using your
results from before.

(a) D = B ∪ C
(b) E = X \D

Solution:

There is no solution available for this question yet.
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25. [Self-Assessment] Find a symbolic binary encoding for X = {0, 1, . . . , 31}. Use it to compute
formulas in propositional logic that symbolically represent the following sets.

• B = {x ∈ X | x is even}
• C = {x ∈ X | x is odd}
• D = {0, 1, 2, 3, 4, 5, 6, 7}

Compute the characteristic functions of the following sets by symbolic operations, using your
results from before.

(a) E = B ∪D
(b) F = C ∩ E
(c) G = E \ F

Solution:

There is no solution available for this question yet.

26. [Self-Assessment] Find a symbolic binary encoding for X = {0, 1, . . . , 31}. Use it to compute
formulas in propositional logic that symbolically represent the following sets.

• B = {8, 9, 10, 11, 12, 13, 14, 15}
• C = {x ∈ X | 0 ≤ x ≤ 15}

Compute the characteristic functions of the following sets by symbolic operations, using your
results from before.

(a) D = B ∪ C
(b) E = B ∩ C
(c) F = C \B

Solution:

There is no solution available for this question yet.

27. [Self-Assessment] Assume you are given the formulas a and b, which symbolically represent
the sets A and B, respectively. Give the formula c, which symbolically represents the set
C = A \B. Solution:

There is no solution available for this question yet.

28. [Self-Assessment] Assume you are given the formulas a and b, which symbolically represent
the sets A and B, respectively. What would you have to check on a, b to test whether or not
A is a strict subset of B, i.e., A ⊂ B? Solution:

There is no solution available for this question yet.

29. [Self-Assessment] Given a state space of size |S| = 64. Find a symbolic binary encoding for
this state space and compute the formulas that symbolically represent the sets

B = {s32, s33, s34, ..., s63} and C = {s16, s17, , s18, ..., s40}.

Following, compute the formulas that represent the sets D = B ∩C, E = B ∪C, F = B \C
and G = C \B. Solution:

There is no solution available for this question yet.
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30. [Self-Assessment] Given a state space of size |S| = 64, find a symbolic binary encoding for
this state space and compute the formulas that symbolically represent the sets of states

B = {s16, s17, s18, ..., s32} and C = {s24, s25, , s26, ..., s64.}

Then compute the formulas that symbolically represent the sets D = B ∩C and E = B ∪C.
Solution:

There is no solution available for this question yet.
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9 Satisfiability Modulo Theories
9.1 Lecture

9.1.1 Definitions and Notations

1. [Lecture] Give the definition of a theory of formulas in first-order logic. Solution:

A theory is as a pair (Σ;A) where Σ is a signature which defines a set of constant, function,
and predicate symbols. The set of axioms A is a set of closed predicate logic formulas in
which only constant, function, and predicate symbols of Σ appear.

2. [Lecture] Explain the concept of a theory in first-order logic using the theory of Linear In-
teger Arithmetic TLIA as example. Solution:

Variables in TLIA are of integer sort (Z). The functions of TLIA are + and − and the
predicates are =, 6=, <,>,≤, and ≥. The axioms withing TLIA define the meaning for
these functions and predicates.
Therefore, for the theory of Linear Integer Arithmetic TLIA we have:

• Σ = {......,−3,−2,−1, 0, 1, 2, 3...,=,+,−, 6=, <,>,≤,≥}
• A defines the usual meaning to all symbols. (Constant number symbols are mapped

to the corresponding value in Z, + is interpreted as the function 0+0→ 0, 0+1→ 1,
etc.).

3. [Lecture] Explain the problem of satisfiability modulo theories. As part of your explanation,
explain what a theory is and explain the meaning of theory-satisfiability.

Solution:

The satisfiability modulo theories (SMT) problem refers to the problem of determining
whether a formula in predicate logic is satisfiable with respect to some theory. A theory
fixes the interpretation/meaning of certain predicate and function symbols. Checking
whether a formula in predicate logic is satisfiable with respect to a theory means that
we are not interested in arbitrary models but in models that interpret the functions and
predicates contained in the theory as defined by the axioms in the theory.

4. [Lecture] Explain the terms T -terms, T -atoms and T -literals for SMT formulas. Solution:

• Constants in Σ, variables, and applications of function symbols in Σ where all inputs
are T -terms are T -terms.

• A T -atom is the application of a predicate symbol in Σ where all inputs are T -terms.
• A T -literal is a T -atoms or its negation.

5. [Lecture] What is the difference between a model of an SMT formula and a model of a
predicate logic formula without a theory? Solution:

A model in predicate logic needs to define the domain of the variables and needs to define
a concrete meaning to all predicate and function symbols and free variables involved.
In SMT, the domain and the interpretation of the predicate and function symbols is fixed.
A model for an SMT formula only defines an assignment to all free variables within the
formula.

Page 125 of 141



9.1 Lecture 9 SATISFIABILITY MODULO THEORIES

6. [Lecture] Given the signature ΣEUF := {=, a, b, c, d, ..., f, g, h, ..., P,Q,R, ...} of the Theory
of Equality and Uninterpreted Functions TEUF . State the axioms AEUF of TEUF . Solution:

The axioms AEUF are the following:

(a) ∀x. x = x (reflexivity)
(b) ∀x, y. x = y → y = x (symmetry)
(c) ∀x, y, z. x = y ∧ y = z → x = z (transitivity)
(d) ∀x, y. (

∧n
i=1 xi = yi)→ f(x) = f(y) (congruence)

(e) ∀x, y. (
∧n

i=1 xi = yi)→ (P (x)↔ P (y)) (equivalence)

7. [Lecture] Explain the concepts of eager encoding and lazy encoding in the context of solving
formulas in SMT. Solution:

• In eager encoding, all axioms of the theory are explicitly incorporated into the input
formula. The resulting equisatisfiable propositional formula is then given to a SAT
solver.

• SMT solvers that use lazy encoding use specialized theory solvers in combination
with SAT solvers to decide the satisfiability of formulas within a given theory. In
contrast to eager encoding, where a sufficient set of constraints is computed at the
beginning, lazy encoding starts with no constraints at all, and lazily adds constraints
only when required.

9.1.2 Eager Encoding

8. [Lecture] Explain the concept of eager encoding to solve formulas in in SMT. Give the 3
main steps that are performed in algorithms based on eager encoding. Solution:

The main idea of eager encoding is that the input formula is translated into a propositional
formula with all relevant theory-specific information encoded into the formula.
Given a formula ϕ, algorithms based on eager encoding operate in three steps:
(a) Replace any unique T -atom in the original formula ϕ with a fresh Boolean variable

to get a Boolean formula ϕ̂.
(b) Generate a Boolean formula ϕcons that constrains the values of the introduced

Boolean variables to preserve the information of the theory.
(c) Invoke a SAT solver on the Boolean formula ϕprop := ϕ̂ ∧ ϕcons that corresponds to

an equisatisfiable propositional formula to ϕ.

9. [Lecture] Explain the specific translations used in eager encoding to decide formulas in the
theory of equality and uninterpreted functions. Solution:

The translations used in the eager approach for TEUF are:
(a) Ackermann Reduction: to remove all function instances, resulting in an equisatisfiable

formula in TE .
(b) Graph-Based Reduction: to remove all equality instances, resulting in an equisatisfi-

able formula in propositional logic.
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10. [Lecture] Given the formula

ϕEUF := f(x) = f(y) ∨ (z = y ∧ z 6= f(z))

Apply the Ackermann reduction algorithm to compute an equisatisfiable formula in TE .
Solution:

ϕFC := (x = y → fx = fy)∧
(x = z → fx = fz)∧
(y = z → fy = fz)

ϕ̂EUF := fx = fy ∨ (z = y ∧ z 6= fz)

ϕE := ϕ̂EUF ∧ ϕFC

11. [Lecture] Given the formula

ϕEUF := f(g(x)) = f(y) ∨ (z = g(y) ∧ z 6= f(z))

Apply the Ackermann reduction algorithm to compute an equisatisfiable formula in TE .
Solution:

ϕFC := (x = y → gx = gy)∧
(gx = y → fgx = fy)∧
(gx = z → fgx = fz)∧
(y = z → fy = fz)

ϕ̂EUF := fgx = fy ∨ (z = gy ∧ z 6= fz)

ϕE := ϕ̂EUF ∧ ϕFC

12. [Lecture] Perform the graph-based reduction on the following formula to compute an equsat-
isfiable formula in propositional logic.
Given the formula

ϕEUF := f(x, y) = f(y, z) ∨ (z = f(y, z) ∧ f(x, x) 6= f(x, y))

Apply the Ackermann reduction algorithm to compute an equisatisfiable formula in TE .
Solution:
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ϕFC := (x = y ∧ y = z → fxy = fyz)∧
(x = x ∧ y = x→ fxy = fxx)∧
(y = x ∧ z = x→ fyz = fxx)

ϕ̂EUF := fxy = fyz ∨ (z = fyz ∧ fxx 6= fxy)

ϕE := ϕ̂EUF ∧ ϕFC

13. [Lecture] Perform graph-based reduction to translate the following formula in TE into an
equisatisfiable formula in propositional logic.

ϕE := (a = b ∨ a = d)→ (b = c ∧ c 6= d)

Solution:

We choose:
• Triangle 1: a-b-c
• Triangle 2: a-c-d

ϕTC :=(ea=b ∧ eb=c → ea=c)∧
(ea=b ∧ ea=c → eb=c)∧
(eb=c ∧ ea=c → ea=b)∧

(ea=c ∧ ec=d → ea=d)∧
(ea=c ∧ ea=d → ec=d)∧
(ec=d ∧ ea=d → ea=c)

ϕ̂E := (ea=b ∨ ea=d → (eb=c ∧ ¬ec=d)

ϕprop := ϕTC ∧ ϕ̂E

14. [Lecture] Perform graph-based reduction to translate the following formula in TE into an
equisatisfiable formula in propositional logic.

ϕE := (a = b ∨ a = d)→ (b = c ∧ c 6= e ∧ e 6= d)

Solution:
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We choose:
• Triangle 1: a-b-c
• Triangle 2: a-c-d
• Triangle 3: c-d-e

ϕTC :=(ea=b ∧ eb=c → ea=c)∧
(ea=b ∧ ea=c → eb=c)∧
(eb=c ∧ ea=c → ea=b)∧

(ea=c ∧ ec=d → ea=d)∧
(ea=c ∧ ea=d → ec=d)∧
(ec=d ∧ ea=d → ea=c)∧

(ec=e ∧ ec=d → ed=e)∧
(ec=e ∧ ed=e → ec=d)∧
(ec=d ∧ ed=e → ec=e)

ϕ̂E := (ea=b ∨ ea=d → (eb=c ∧ ¬ec=e ∧ ¬ee=d)

ϕprop := ϕTC ∧ ϕ̂E

9.1.3 Lazy Encoding

15. [Lecture] Explain the concept of Lazy Encoding to decide satisfiability of formulas in a first-
order theory. Solution:

The propositional skeleton of ϕ is given to a SAT solver. If a satisfying assignment is
found, it is checked by a theory solver. If the assignment is consistent with the theory, ϕ
is T -satisfiable. Otherwise, a blocking clause is generated and the SAT solver searches for
a new assignment. This is repeated until either a T -consistent assignment is found, or the
SAT solver cannot find any more assignments.
See figure in lecture notes on page 11.

16. [Lecture] Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := x = f(y) ∧ x 6= y ∧ y 6= u ∧ y = f(u) ∧ z 6= f(u)∧
u = v ∧ v = z ∧ v = f(y) ∧ v 6= f(z) ∧ f(x) 6= f(z)

Use the Congruence Closure algorithm to determine whether this formula is satisfiable. So-
lution:
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{x, f(y)}, {y, f(u)}, {u, v}, {v, z}, {v, f(y)}, {f(x)}, {f(z)}
{x, f(y)}, {y, f(u)}, {u, v, z, v, f(y), {f(x)}, {f(z)}}
{x, f(y), u, v, z, v}, {y, f(u)}, {f(x)}, {f(z)}
{x, f(y), u, v, z, v}, {y, f(u)}, {f(x), f(z)}
{x, f(y), u, v, z, v}, {y, f(u)}, {f(x), f(z)}

Checking the disequality f(x) 6= f(z) leads to the result that the assignment is UNSAT,
since f(x) and f(z) are in the same congruence class.

9.2 Practicals
17. [Practicals] [3 Points] Given the formula:

ϕEUF := f(x) = y∧x = g(x)∨x 6= f(x)∧g(x) = f(g(x))∨y 6= g(x)∧x = f(y)∧g(y) = f(g(x))

Apply the Ackermann reduction algorithm to compute an equisatisfiable formula in TE .
Solution:

There is no solution available for this question yet.

18. [Practicals] [3 Points] Given the formula:

ϕEUF := x = f(x, y) ∧ x 6= y ↔ z = f(x, y) ∨ f(y, z) 6= z ∧ y 6= f(x, y) ∨ y = f(x, z)

Apply the Ackermann reduction algorithm to compute an equisatisfiable formula in TE .
Solution:

There is no solution available for this question yet.

19. [Practicals] [3 Points] Perform graph-based reduction to translate the following formula in
TE into an equisatisfiable formula in propositional logic.

ϕE := x 6= y ∧ y = c ∨ c = d→ ¬(d 6= z ∨ z = a) ∧ ¬(a = b ∧ x 6= z).

Solution:

There is no solution available for this question yet.

20. [Practicals] [5 Points] Consider the following formula in TEUF :

ϕEUF := (y = z ∨ f(x) = f(y))→ (x = z ∨ f(x) = x ∧ f(x) = y)

Use Ackermann’s reduction to compute an equisatisfiable formula in TE .
Then perform the graph-based reduction on the outcome of Ackermann’s reduction to con-
struct an equisatisfiable propositional formula. Solution:

There is no solution available for this question yet.
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21. [Practicals] [3 Points] Use the Congruence-Closure algorithm to check if the following as-
signment for the equalities is satisfiable.

ϕEUF := f(b) = a ∧ e = b ∧ c = f(c) ∧ d 6= f(e) ∧ f(a) = f(d) ∧ a 6= f(c) ∧ d = f(a)

Solution:

There is no solution available for this question yet.

22. [Practicals] [3 Points] Use the Congruence-Closure algorithm to check if the following as-
signment for the equalities is satisfiable.

ϕEUF := f(o) = k ∧ l 6= f(m) ∧ n 6= l ∧ f(k) = m ∧ f(o) = f(k) ∧ o 6= k∧
l 6= f(n) ∧ f(m) 6= k ∧m 6= f(m) ∧ o = n ∧ f(m) = o

Solution:

There is no solution available for this question yet.

9.3 Self-Assessment

9.3.1 Definitions and Notations

23. [Self-Assessment] Explain the concept of a theory in first-order logic using the theory of
Linear Real Arithmetic TLRA as example. Solution:

There is no solution available for this question yet.

24. [Self-Assessment] In the following list tick all formulas that are axioms of the theory of
equalities and uninterpreted functions TEUF .

� ∀x (x = x)

� ∀x∀y (x = y ∨ y = x)

� ∀x∀y ∀z (x = y ∧ y = z → x = z)

� ∀x∀y (f(x) = f(y)→ x = y)

25. [Self-Assessment] A first-order theory T is defined by a signature Σ and a set of axioms A.
Consider the Theory of Equality TE . Give its signature ΣE and its axioms AE . Solution:

There is no solution available for this question yet.

26. [Self-Assessment] What is an uninterpreted function? What is the difference between an
uninterpreted and an interpreted function? What are the properties of an uninterpreted
function? Solution:

There is no solution available for this question yet.

27. [Self-Assessment] Provide the answers to the following questions:

• When is a formula T -valid?
• When is a formula T -satisfiable?
• When do we have T -entailment of two formulas?

Solution:

There is no solution available for this question yet.

Page 131 of 141



9.3 Self-Assessment 9 SATISFIABILITY MODULO THEORIES

9.3.2 Eager Encoding

28. [Self-Assessment] In the following list tick all statements that conform to the eager encoding
approach for the implementation of SMT solver.

� Eager encoding is based on the interaction between a SAT solver and a so-called theory
solver.

� Eager encoding involves translating the original formula to an equisatisfiable boolean
formula in a single step.

� Eager encoding is based on the direct encoding of axioms.
� Eager encoding starts with no constraints at all and adds constraints only when needed.

29. [Self-Assessment]

• Explain the concept of Eager Encoding to decide satisfiability of formulas in a first-order
theory.

• Explain how eager encoding works on the Theory of Equality TE .

Solution:

There is no solution available for this question yet.

30. [Self-Assessment] In the following text fill the blanks with the missing word(s).
The Ackermann’s reduction is used to reduce a formula ϕin in

to a formula in
that is equisatisfiable. Two formulas are equisatisfiable if

. The algorithm adds ex-
plicit constraints to the formula ϕin to enforce .
These constraints say, that ∀x̄∀ȳ (

∧
i xi = yi) → ). The resulting eq-

uisatisfiable formula consists of two parts and is of the form: ϕout := ϕC ∧ ϕ̂in. The
right part of the formula ϕ̂in describes the flattening original formula in which we replace

with . So-
lution:

There is no solution available for this question yet.

31. [Self-Assessment] For the following TEUF -formula, compute an equivalid formula ϕE in the
Theory of Equality TE , by applying Ackermann’s Reduction.

ϕEUF := f(x, y) = g(x)→ [f(g(y), z) = x ∨ ¬(g(z) = y)] .

Solution:

There is no solution available for this question yet.

32. [Self-Assessment] Consider the following formula in TEUF .

ϕEUF := f(g(x), h(y)) = a ∨ b = f(u, v) → k(a, b) = u ∧ v = k(x, y)

Use Ackermann’s reduction to compute an equisatisfiable formula in TE .
Solution:

There is no solution available for this question yet.
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33. [Self-Assessment] In the context of Eager Encoding within the Satisfiability Modulo Theories
(SMT), explain how instances of reflexivity, symmetry and transitivity are handled within
the Graph-based Reduction. Solution:

There is no solution available for this question yet.

34. [Self-Assessment] In the following text fill the blanks with the missing word(s).
The Graph Based Reduction is used to reduce a formula ϕin in

to a formula in
that is equisatisfiable. Two formulas are equisatisfiable if

. In the first step of
the algorithm, we create a Non-Polar Equality Graph and in the next step we make it
chordal. The graph is chordal, if

. We introduce fresh propositional variables for each equation to
ensure . In order to ensure transitivity, the algorithm adds con-
straints of the form
for all in the graph. The resulting equisat-
isfiable formula consists of two parts and is of the form: ϕout := ϕTC ϕ̂in. The
right part of the formula ϕ̂in describes the flattening original formula in which we replace

with . Solution:

There is no solution available for this question yet.

35. [Self-Assessment] Consider the following formula from TE .

ϕEUF :=
[
fy = gx ∧ fy = y

]
∨
[
fy = fx ∧ y 6= fgy

]
∨
[
fx = fy ∧ fy = y

]
∨
[
fx = fgy ∧ fy 6= y

]
Use the graph-based algorithm to construct an equisatisfiable propositional formula ϕprop.
What would you have to change if you would want to check ϕE for validity instead of satis-
fiability? Solution:

There is no solution available for this question yet.

36. [Self-Assessment] Consider the following formula from TE .

ϕEUF := x 6= y ∧ y = gx ∨ gx = gy → ¬(gy 6= z ∨ z = fx) ∧ ¬(fx = fy ∧ x 6= z)

Use the graph-based algorithm to construct an equivalid propositional formula ϕprop.
Solution:

There is no solution available for this question yet.

37. [Self-Assessment] Consider the following formula in TEUF .

ϕEUF := f(x) = f(y) ∧ f(y) = y ∨ f(g(x)) = f(f(y)) ∧ g(x) = x (7)
∨f(x) 6= f(y) ∧ y 6= g(f(y)) ∧ x 6= g(x) (8)

Use Ackermann’s reduction to compute an equisatisfiable formula in TE .
Then perform the graph-based reduction on the outcome of Ackermann’s reduction to con-
struct an equisatisfiable propositional formula ϕprop. Solution:

There is no solution available for this question yet.
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9.3.3 Lazy Encoding

38. [Self-Assessment] In the following list tick all statements that conform to the lazy encoding
approach for the implementation of SMT solver.

� Lazy encoding is based on the interaction between a SAT solver and a so-called theory
solver.

� Lazy encoding involves translating the original formula to an equisatisfiable Boolean
formula in a single step.

� Lazy encoding is based on the direct encoding of axioms.
� Lazy encoding starts with no constraints at all and adds constraints only when needed.

39. [Self-Assessment] Satisfiability Modulo Theories (SMT) solvers can be implemented via lazy
encoding or via eager encoding. Give a short explanation about both approaches and point
out their main differences. Solution:

There is no solution available for this question yet.

40. [Self-Assessment] To decide SMT formulas, the lazy approach uses a theory solver in com-
bination with a SAT solver. Explain what a theory solver is. Explain what the inputs and
outputs of a theory solver are and how it is used within the lazy encoding approach.

Solution:

There is no solution available for this question yet.

41. [Self-Assessment] In the following text fill the blanks with the missing word(s).
One way to solve Satisfiability Theories problems works as follows. First,
the propositional skeleton of the formula in question is given to a solver. If this
solver returns , we terminate with answer . In the other
case, the solver returns a , which is a
of theory literals. This can be given to a solver that can decide the

fragment of the theory in question. If this solver returns ,
we terminate with answer . Otherwise, we add a

to the propositional skeleton, to prevent the same
from occurring again, and run the solver on the augmented propositional skele-
ton. This loop is repeated until either the solver returns
(in which case the answer is ), or the solver re-
turns (in which case the answer is ). This entire
procedure is called encoding. Solution:

There is no solution available for this question yet.

42. [Self-Assessment] In the following list, mark all items that are true for an eager encoding
procedure for TUE with E, mark all items that are true for a lazy encoding procedure with
L, and mark all items which neither belong to an eager nor a lazy encoding procedure with
N.

� Only one call to a propositional SAT solver is required.

� A propositional formula that is equisatisfiable to the original theory formula is con-
structed before calling any solver.
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� A propositional SAT solver and a theory solver for the conjunctive fragment of the
theory interact with each other.

� For a theory-inconsistent assignment of literals, a blocking clause is created.

43. [Self-Assessment] Use the Congruence-Closure algorithm to check if the following assignment
for the equalities is satisfiable.
ϕEUF := x = y ∧ y = f(y) ∧ y 6= f(x) ∧ z = f(z) ∧ f(z) = f(x) ∧ z = f(y)

Solution:

There is no solution available for this question yet.

44. [Self-Assessment] Explain for what the Congruence Closure algorithm is used. What are
the inputs and outputs of the algorithm? What does the algorithm compute? Explain the
individual steps of the algorithm. Solution:

There is no solution available for this question yet.

45. [Self-Assessment] Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := f(a) = c ∧ f(c) 6= f(d) ∧ b = f(c) ∧ a 6= f(c) ∧ c = d ∧ b 6= d ∧ a = c

Use the Congruence Closure algorithm to determine whether this formula is satisfiable. So-
lution:

There is no solution available for this question yet.

46. [Self-Assessment] Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := a = b ∧ c 6= d ∧ f(a) = c ∧ f(b) 6= f(c) ∧ f(a) = f(d) ∧ f(b) = c ∧ f(d) = f(c)

Use the Congruence Closure algorithm to determine whether this formula is satisfiable. So-
lution:

There is no solution available for this question yet.

47. [Self-Assessment] Consider the following formula in the conjunctive fragment of TEUF . Let
a 6= b be a shorthand notation for ¬(a = b).

f(b) = a ∧ c 6= d ∧ f(e) = b ∧ d 6= f(b) ∧ f(a) = f(e) ∧
b 6= f(b) ∧ a 6= e ∧ f(a) = e ∧ a = c ∧ f(b) 6= e ∧ d = f(c)

Use the Congruence Closure algorithm to determine whether this formula is satisfiable. So-
lution:

There is no solution available for this question yet.
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10 Temporal Logic
10.1 Lecture

1. [Lecture] Translate the following sentences in computation tree logic CTL?.

• In every execution the system gives a grant infinitely often.
• There exists an execution in which the system sends a request finitely often.

Solution:

• The Boolean variable g represents “The system gives a grant.”
ϕ1 := AGFg

• The Boolean variable r represents “The system sends a request.”
ϕ2 := EGF¬r

2. [Lecture] Given the following execution word w of a Kripke structure. Evaluate the formula
ϕ on w. Evaluate each sub-formula for any execution step using the provided table.

• w = {}, {a}, {a}, {b}, {}, {a}, {a, b}ω

• ϕ = Xa ∨ aUb

Step 0 1 2 3 4 5 ω
a 0 1 1 0 0 1 1
b 0 0 0 1 0 0 1
Xa
aUb
Xa ∨ aUb
Solution:

Step 0 1 2 3 4 5 ω
a 0 1 1 0 0 1 1
b 0 0 0 1 0 0 1
Xa 1 1 0 0 1 1 1
aUb 0 1 1 1 0 1 1
Xa ∨ aUb 1 1 1 1 1 1 1

3. [Lecture] Given the following execution word w of a Kripke structure. Evaluate the formula
ϕ on w. Evaluate each sub-formula for any execution step using the provided table.

• w = {}, {a}, {}, {a, b, c}, {a}, {a, b}, ({a}, {a, c}, {a, c})ω

• ϕ = Ga→ (Fb ∨ c)

Step 0 1 2 3 4 5 ω
a 0 1 0 1 1 1 1 1 1
b 0 0 0 1 0 1 0 0 0
c 0 0 0 1 0 0 0 1 1
Ga
Fb
Fb ∨ c
Ga→ (Fb ∨ c)
Solution:
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Step 0 1 2 3 4 5 ω
a 0 1 0 1 1 1 1 1 1
b 0 0 0 1 0 1 0 0 0
c 0 0 0 1 0 0 0 1 1
Ga 0 0 0 1 1 1 1 1 1
Fb 1 1 1 1 1 1 0 0 0
Fb ∨ c 0 1 0 1 1 1 0 1 1
Ga→ (Fb ∨ c) 0 1 0 1 1 1 0 1 1

4. [Lecture] Given the following execution word w of a Kripke structure. Evaluate the formula
ϕ on w. Evaluate each sub-formula for any execution step using the provided table.

• w = {}, {a}, {}, {a, b, c}, {a}, {a, b}, ({a}, {a, c}, {a, c})ω

• ϕ = GFa→ (FG¬b ∧ c)

Step 0 1 2 3 4 5 ω
a 0 1 0 1 1 1 1 1 1
b 0 0 0 1 0 1 0 0 0
c 0 0 0 1 0 0 0 1 1
GFa
FG¬b
FG¬b ∧ c
GFa→ (FG¬b ∧ c)

Solution:

Step 0 1 2 3 4 5 ω
a 0 1 0 1 1 1 1 1 1
b 0 0 0 1 0 1 0 0 0
c 0 0 0 1 0 0 0 1 1
GFa 1 1 1 1 1 1 1 1 1
FG¬b 1 1 1 1 1 1 1 1 1
FG¬b ∧ c 0 0 0 1 0 0 0 1 1
GFa→ (FG¬b ∧ c) 0 0 0 1 0 0 0 1 1

5. [Lecture] Translate the following sentences in computation tree logic CTL?.

• For any execution, it always holds that whenever the robot visits region A, it visits
region C within the next two steps.

• There exists an execution such that the robot visits region C within the next two steps
after visiting region A.

Solution:

We use the following Boolean variables:
• a represents “The robot visits region A”
• b represents “The robot visits region B”
• c represents “The robot visits region C”

• ϕ1 := AG(a→ Xc ∨XXc)
• ϕ2 := EG(a→ Xc ∨XXc)

Page 137 of 141



10.1 Lecture 10 TEMPORAL LOGIC

6. [Lecture] Translate the following sentences in computation tree logic CTL?.

• The robot can visit region A infinitely often and region C infinitely often
• Always, the robot visits region A infinitely often and region C infinitely often.
• If the robot visits region A infinitely often, it should also visit region C finitely often.

Solution:

We use the following Boolean variables:
• a represents “The robot visits region A”
• b represents “The robot visits region B”
• c represents “The robot visits region C”

• ϕ1 := E(GFa ∧GFc)
• ϕ2 := A(GFa ∧ FG¬c)
• ϕ3 := A(GFa→ GFc)

7. [Lecture] Given the following Kripke structure K. Does the initial state s0 of K satisfy the
following formulas?

• ϕ1 := EXX(a ∧ b)
• ϕ2 := EXAX(a ∧ b)

Figure 1: Left: Kripke structure of Example 7, Right: Corresponding computation tree

Solution:

• s0 � EXX(a ∧ b)
• s0 2 EXAX(a ∧ b)

8. [Lecture] Given the following Kripke structure K. Does the initial state s0 of K satisfy the
following formulas?

• ϕ1 := EXp

• ϕ2 := EG¬p
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Figure 2: Kripke structure of Example 8

Solution:

• s0 � EXp

• s0 � EG¬p

10.2 Self-Assessment

9. [Self-Assessment] Give the definition of a Kripke structure. Explain the components of
the tuple a Kripke structure consists of. Give an example of a Kripke structure in the
representation of a graph.

Solution:

There is no solution available for this question yet.

10. [Self-Assessment] Give the definition of paths and words of Kripke structures. Give an
example in which you draw a graph representing a Kripke structure, and give one possible
infinite path and corresponding word.

Solution:

There is no solution available for this question yet.

11. [Self-Assessment] What does a computation tree of a Kripke structure represent? Give an
example in which you draw a graph representing a Kripke structure, and draw the first 3
levels of the computation tree of this Kripke structure. Solution:

There is no solution available for this question yet.

12. [Self-Assessment]
The temporal operators describe properties that hold along a given infinite path ρ through
the computation tree of a Kripke structure. Given two formulas ϕ and ψ describing state
properties.

• Which are the properties that ρ needs to satisfy such that ρ � Gϕ?
• Which are the properties that ρ needs to satisfy such that ρ � Fϕ?
• Which are the properties that ρ needs to satisfy such that ρ � Xϕ?
• Which are the properties that ρ needs to satisfy such that ρ � ϕUψ?
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Solution:

There is no solution available for this question yet.

13. [Self-Assessment] Consider an ordinary traffic junction with incoming lanes from the north,
south, east and west. We want to formulate relevant constraints that a traffic light system
has to fulfill.
Give a set of propositional variables that model whether the north and south or the east
and the west get the

• green,
• yellow or
• red

light, respectively.

Formulate the following sentences using CTL?:

(a) The north/south lanes will never get the green light at same time as the east/west lanes.
(b) Whenever the north/south lane receive the green light it will stay green until it changes

to yellow.
(c) When the east/west lane has the red light, it will eventually get the yellow and red light

until the light switches to green.

Solution:

There is no solution available for this question yet.

14. [Self-Assessment] Given the following execution word w of a Kripke structure. Evaluate the
formula ϕ on w. Evaluate each sub-formula for any execution step using the provided table.

• w = {}, {a}, {}, {a, b}, {a}, {a, b}, ({a}, {a, b}, {a})ω

• ϕ = FGa→ FGb

Step 0 1 2 3 4 5 ω
a 0 1 0 1 1 1 1 1 1
b 0 0 0 1 0 1 0 1 0
FGa
FGb
FGa→ FGb

Solution:

There is no solution available for this question yet.

15. [Self-Assessment] Given the following execution word w of a Kripke structure. Evaluate the
formula ϕ on w. Evaluate each sub-formula for any execution step using the provided table.

• w = {a}, {a}, {a}, {b, c}, {a}, {a, b}({a}, {c})ω

• ϕ = aUc ∨ Fb
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Step 0 1 2 3 4 5 ω
a 1 1 1 0 1 1 1 0
b 0 0 0 1 0 1 0 0
c 0 0 0 1 0 0 0 1
aUc
Fb
aUc ∨ Fb

Solution:

There is no solution available for this question yet.

16. [Self-Assessment] Give the definition of the syntax of the computation tree logic CTL?. In
particular, give the definition of state formulas and path formulas. Solution:

There is no solution available for this question yet.

17. [Self-Assessment] Give an intuitive explanation of the semantics of computation tree logic
CTL?. Therefore, explain the semantics of the introduced path quantifiers and temporal
operators with respect to the computation tree of a Kripke structure. Solution:

There is no solution available for this question yet.
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