
Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Computer Organization and
Networks

Chapter 3: Finite State Machine

IAIK http://www.iaik.tugraz.at
1

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Why should you read this primer?

With this set of slides I guide you through the
essence of designing finite state machines.

With each slide, you get drawn into the topic
step by step.

I use very simple examples in order to
concentrate on the essence.

2

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

I assume that you know…

• what the term “function” means in mathematics.

• that in logic functions we use only 0s and 1s.

• that a logic function can be uniquely described
with a truth table.

• that a truth table lists all possible input
combinations in an ordered fashion.

• that the symbol “~” is used for logic negation.

• that the symbol “&” is used for logic ANDing.

• that the symbol “|” is used for logic ORing.

3

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Finite State Machines (FSMs)

• FSMs are the “work horse” in digital systems.

• FSMs can be implemented with hardware.

• We look at “synchronous” FSMs only:

– The “clock signal” controls the action over time

• FSMs can be described with three main “views”:

– The functional view with the “state diagram”

– The timing view with the “timing diagram”

– The structural view with the “logic circuit diagram”

4

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Time flows continuously

time

5

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We cut time into slices

time

6

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Time slices are strictly ordered

i i+1 i+2i—1 i—2

time

7

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Clock signal

i i+1 i+2i—1 i—2

0

1

time

We use the clock signal (“clk”) in order to advance
time from slice to slice.

8

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Rising clock edge

i i+1 i+2i—1 i—2

0

1

time

With rising clock edges we define the transition
between neighboring time slices.
The negative clock edges have no importance.

9

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Clock period

i i+1 i+2i—1 i—2

0

1

clock
period

time

We call the time between two rising clock
edges also “clock period”.
Most often, clock periods have the same
length. But this is not necessarily the case. 10

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Synchronous
finite state machine
(= automaton)

FSM

clk

A synchronous FSM is clocked by a clock signal (“clk”).
In each clock period, the machine is in a defined (current) state.
With each rising edge of the clock signal, the machine advances
to a defined next state.

We are interested in “finite state machines” (FSMs).
FSMs have only a finite number of states.

11

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The sequence of
states can be
defined in a
state diagram.

12

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

State diagram:

We denote the
states with circles
and give them
symbolic names,
e.g. A, B, and C.

A

B

C

13

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

State diagram:

We define one of
the states as the
initial state.

A

B

C

14

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

In the beginning…

0

1

time

Initially, i.e. shortly after switching on the FSM and before the
first rising edge of clock, there is the initial period. In this period,
the FSM is in the “initial state”.

initial period

A

15

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

State diagram:

With arrows we
define the sequence
of states.

A

B

C

16

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The sequence of
states can also
be defined in a
state transition
table.

A

B

C

current
state

A
B
C

next
state

B
C
A

17

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram

0

1

B

clk

A CC BAstate

time

Initially, the FSM is in the initial state A.

With every positive clock edge, the next state
becomes the current state.

An FSM has always a next state.
18

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

In order to technically realize
(“implement”) a state diagram,

we start by giving
each state
a unique number.

A

B

C

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Popular
state-encoding schemes

• Binary encoding

– needs minimum amount of flip-flops.

• One-hot encoding

– Tends to have a simpler next-state logic.

20

A

B

C

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Binary encoding

00

01

10

state

A
B
C

number

00
01
10

21

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

For a Verilog example of this FSM see

chapter_03/example_00/01_fsm_moore_no_input.v

22

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Binary encoding:
The state transition table
has also only binary numbers.

00

01

10

current
state

00
01
10

next
state

01
10
00

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We also enter the unused
combination “11”.
This state does not exist.
“x” stands for “Don’t care”.

00

01

10

current
state

00
01
10
11

next
state

01
10
00
xx

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define names for
the two state bits, e.g.
s1, s0.

00

01

10

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Each state bit is stored in a flipflop

flipflop stored value

26

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

A flipflop stores a new value, when a
rising edge occurs on the clock input

flipflop stored value

clock

27

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The flipflop stores the value, which it
sees on its input.

flipflop stored value

clock

input

28

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Summary: A D-flip-flop samples its input
value D and stores this value when

a rising edge of clk occurs

stored value

clk

input D Q

Thus, a D-type flipflop can be seen as a 1-bit photo camera.29

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

In our example, we need 2 flip-flops
for storing the state bits.

s1

clk

next s1 D1 Q1

Flipflops which can store several bits
are also called “registers”.

s0next s0 Q0D0

30

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We use the state transition table as a
“lookup table”…

s1

clk

D1 Q1

s0Q0D0

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

next s1

next s0

31

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

…and thus find out the next state

s1

clk

D1 Q1

s0Q0D0

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

32

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

At each positive edge of clk, the next
state gets stored as the current state.

s1

clk

D1 Q1

s0Q0D0

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

33

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

In order to get the initial state “00”, we use flipflops
with an “asynchronous reset input”. Shortly after

switching on the circuit, we apply “areset”.

s1

clk

D1 Q1

s0Q0D0

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

areset
34

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The state transition function in this example can be
derived from the truth table:

next s0 = (~s1) & (~s0)

s1

clk

D1 Q1

s0Q0D0

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x 0

areset
We set the don’t care to 0. 35

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The state transition function:
next s0 = (~s1) & (~s0)
next s1 = (~s1) & s0

s1

clk

D1 Q1

s0Q0D0

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
0 0

areset
We set this don’t care value also to 0. 36

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Structural diagram of the FSM:
State-transition function,

storage elements, and feedback of state.

next s0 = (~s1) & (~s0)

next s1 = (~s1) & s0

clk

D1 Q1

Q0D0

areset

next s0

next s1

s0

s1

37

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence so far

State diagram:

“next state” is a function of (current) “state”

State transitions:

the “next state” becomes (the current) “state”
on the rising edge of the clock

38

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The FSM modeled and simulated
with Logisim

39

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Inputs

40

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

FSMs can also have inputs influencing
the transition to the next state

A

B

Cin == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in”
influences the choice of
the state after B.

41

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

FSMs can also have inputs influencing
the transition to the next state

A

B
C

in == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in”
influences the choice of
the state after B.

The following state can also
be the same as the current state.

in == 0

in == 1

42

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The state transition table

A

B
C

in == 0

in == 1

in == 0

in == 1

current in next
state state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

43

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

For a Verilog example of this FSM see

chapter_03/example_00/01_fsm_moore_no_output.v

44

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram. Example 1

0

1

B

clk

B CA CAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

45

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram. Example 2

0

1

B

clk

C BC AAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

46

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram. Example 3

0

1

B

clk

A BC BAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

47

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Binary state encoding: Instead of
symbolic state names we use numbers

00

01
10

in == 0

in == 1

in == 0

in == 1

current in next
state state

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0

48

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

“11” does not exist: We use “Don’t
Care” as the following state

00

in == 0

in == 1

in == 0

in == 1

current in next
state state

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

01
10

49

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

I have ordered the lines in the state
transition table from 0 to 7. This makes

it easier to “read” the table.

00

in == 0

in == 1

in == 0

in == 1

current in next
state state

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

0
1
2
3
4
5
6
7

01
10

50

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We call the state bits “s1” and “s0”

00

in == 0

in == 1

in == 0

in == 1

current in next
s1 s0 s1 s0

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

0
1
2
3
4
5
6
7

01
10

51

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

next s0 = ((~s1) & (~s0) & (~in))
| ((~s1) & (~s0) & in)

current in next
s1 s0 s1 s0

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x 0
1 1 1 x 0

0
1
2
3
4
5
6
7

00

in == 0

in == 1

in == 0

in == 1

01
10

52

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

next s1 = ((~s1) & s0 & in)
| (s1 & (~s0) & in)

current in next
s1 s0 s1 s0

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 0 0
1 1 1 0 0

0
1
2
3
4
5
6
7

00

in == 0

in == 1

in == 0

in == 1

01
10

53

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Structural diagram of the FSM

next s0 = ((~s1) & (~s0) & (~in))
| ((~s1) &

(~s0) & in)

next s1 = ((~s1) & s0 & in)
| (s1 & (~s0) & in)

clk

D1 Q1

Q0D0

areset

next s0

next s1

s0

s1

in

54

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Implementation with Logisim

55

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Outputs

56

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

FSMs typically also have outputs

4

3
2

A

B C

in == 0

in == 1

output = f(state)

In this example we see
that the outputs are a function
of the state. We write the output
values into the circles.

We call such machines also
“Moore machines”:

in == 0

in == 1

57

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define the outputs with the
“output function”

4

3
2

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state output
A 4
B 3
C 2

C

in == 0

in == 1

58

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram. Example 3

0

1

B

clk

A AC BAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

out 4 3 2 4 3 4

59

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define the outputs with binary
values

100

011
010

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state output
A 100 (=4)
B 011 (=3)
C 010 (=2)

C

in == 0

in == 1

60

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define the outputs with binary
values

100

011
010

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state o2 o1 o0
A 1 0 0
B 0 1 1
C 0 1 0

C

in == 0

in == 1

61

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

For a Verilog example of this FSM see

chapter_03/example_00/01_fsm_moore_with_output_function.v

62

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Binary state encoding: We define the
outputs with binary values

100

011
010

A

B

in == 0

in == 1

state o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

C

in == 0

in == 1

63

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define the outputs with binary
values

100

011
010

A

B

in == 0

in == 1

s1 s0 o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

o2 = ~s1 & ~s0

C

in == 0

in == 1

64

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define the outputs with binary
values

100

011
010

A

B

in == 0

in == 1

s1 s0 o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

C

in == 0

in == 1

65

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define the outputs with binary
values

100

011
010

A

B

in == 0

in == 1

s1 s0 o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

o0 = ~s1 & s0

C

in == 0

in == 1

66

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Structural diagram of the FSM

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
|(s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

67

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Implementation with Logisim

68

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

69

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

a state transition is
caused by the
clock signal. 70

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

a state transition is
caused by the
clock signal.

With “areset” we can
initialize the ASM
(“initial state”).

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

71

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

With the next-state function f
we compute the next state:
next state = f(state, input)

72

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

With the output function we compute the
output values:

output = g(state)

73

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

74

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

There exist 2 types of machines:
check out the

LITTLE but IMPORTANT difference

• Moore Machines
– next state = function of state and input

– output = function of state

• Mealy Machines
– next state = function of state and input

– output = function of state and input

75

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

76

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Mealy Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

output = g(state, input)

77

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

An example for a Mealy Machine

A

B

in == 0
out = 3

in == 1
out = 1

out = 4 out = 2

We write the output values
next to the transition arrows,
since the output depends not
only on the state, but can also
depend on the input.

C

in == 0

in == 1
out = 0

78

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The state transitions are the same as in the
previous example with the Moore Machine

A

B

in == 0
out = 3

in == 1
out = 1

out = 4

current in next
state state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

C

in == 1
out = 0

out = 2
in == 0

79

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The output function

A

B

in == 0
out = 3

in == 1
out = 1

out = 4

The output function can be derived from the state diagram.
output = g(state, input)

state in output
A 0 4
A 1 4
B 0 3
B 1 1
C 0 2
C 1 0

out = 2
in == 0

in == 1
out = 0

C

80

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram

0

1

B

clk

A AC BAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram. We see here also, how
the value of “in” immediately influences the value of “out”.

0

1

out 4 3 2 4 3 41 3 1 0

81

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

For a Verilog example of this FSM see

chapter_03/example_00/04_fsm_mealy.v

82

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Binary encoding: Re-writing the output
table with binary values.

A

B

in == 0
out = 3

in == 1
out = 1

out = 4

And completing the table with the unused bit combinations.

s1 s0 in o2 o1 o0
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 x x x
1 1 1 x x x

out = 2
in == 0

in == 1
out = 0

C

83

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We can derive the logic functions for
o2, o1, and o0

s1 s0 in o2 o1 o0
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 x x x
1 1 1 x x x

o2 = ~s1 & ~s0

84

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We can derive the logic functions for
o2, o1, and o0

s1 s0 in o2 o1 o0
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 x x x
1 1 1 x x x

o2 = ~s1 & ~s0

o1 = (~s1 & s0 & ~in)
| (s1 & ~s0 & ~in)

85

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We can derive the logic functions for
o2, o1, and o0

s1 s0 in o2 o1 o0
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 x x x
1 1 1 x x x

o2 = ~s1 & ~s0

o1 = (~s1 & s0 & ~in)
| (s1 & ~s0 & ~in)

o0 = ~s1 & s0

86

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The result

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0 & ~in)
| (s1 & ~s0 &

~in)

o0 = ~s1 & s0

o2

o1

o0

87

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Modeling with Logisim

88

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We can combine machines

• Combining Moore Machines causes no problem.
We get another Moore Machine.

• Combining a Moore Machine with a Mealy
Machine causes also no problem. We get a
Moore Machine or a Mealy Machine.

• Combining two Mealy Machines can cause
troubles: One needs to avoid combinational
loops!

89

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The combination of two Moore Machines creates
again a (more complex) Moore Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

90

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We can even connect More Machines in
a loop-like fashion

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

91

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The combination of a Moore Machine with a Mealy Machine
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

92

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The combination of a Moore Machine with a Mealy Machine
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

93

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The combination of two Mealy Machines is “dangerous”:
You need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

94

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The combination of two Mealy Machines is “dangerous”: You
need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

95

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Summary

• All digital logic can in principle be built with Moore
Machines and Mealy Machines.

• You always start by defining the function with a state
diagram.

• If you choose values for the input signal(s), then you can
derive the timing diagram by using the state diagram.

• From a state diagram, you can always derive a circuit
diagram.

96

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Algorithmic State Machines

97

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Algorithmic State Machines (ASMs)

• ASMs are a useful extension to finite state
machines

• ASMs allow to specify a system consisting of a
data path together with its control logic

• All FSM state diagrams have an equivalent
ASM diagram

98

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

FSM state diagram  ASM diagrams

4

3
2

B

Cin == 0

in == 1

out = 4A

out = 3

out = 2

in

1

A

B

C

0

99

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Mealy Machines

A

B

C
in == 0
out = 3

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3

100

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Mealy Machines

A

B

C
in == 0
out = 3

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3

101

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Register-Transfer Statements

• Register-transfer statements define the change of a value stored in
a register.

• Values in registers can only change at the active (= rising) edge of
clock.

• We denote “register-transfer statements” with a “left arrow” (“”)

• Example: “a  x” means that the value in the register “a” gets the
value of “x” at the “next” active (= rising) edge of clock.

• We can specify register-transfer statement in an ASM diagram.

102

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

ASM diagram with two register-transfer
statements

out = 4
X  0

out = 3

out = 2
X  X + 1

in

1

A

B

C

0

The value stored in register X gets 0
at the state transition
from state A to state B.

The value in register X gets incremented
at the state transition following state C.

The value in register X does not change
upon leaving state B.

103

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram

0

1

B

clk

A BC BAstate

in
0

1

out 4 3 2 4 3 3

X ? 0 0 1 0 0

104

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

“=“ versus “”

• With the equal sign (“=“) we denote that the
output of the FSM has a certain value during a
particular state.

• With the left-arrow (“”) we denote a
register-transfer statement: The register value
left of the arrow changes to whatever is
defined right of the arrow upon the next
active (= rising) edge of clock.

105

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Several register-transfer statements can
be specified within one state

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

in

1

A

B

C

0

The values stored in register X and
register Y become 0 at the state transition
from state A to state B.

The value in register X gets incremented
at the state transition following state C.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.

106

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Several register-transfer statements can
be specified within one state

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

The values stored in register X and
register Y become 0 at the state transition
from state A to state B.

The value in register X gets incremented
at the state transition following state C.
Register Y gets the “old” value from X; i.e
the value before X gets incremented.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.

107

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

For a Verilog example of this ASM graph see

chapter_03/example_00/05_asm.v

108

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Manual Synthesis of an ASM Graph in
Logisim

109

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Register-transfer statements define the
data path

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

X  0
X  X
X  X+ 1

Y 0
Y X

The “neighborhood” of register X:

The “neighborhood” of register Y:

110

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The neighborhood of register X

Case 0: X  X
Case 1: X  X+ 1
Case 2: X  0

We need to distinguish
between 3 cases.

111

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The neighborhood of register X

clrx incx action
0 0 X  X
0 1 X  X+ 1
1 0 X  0

We use binary notation
and name the two binary
select variables.

112

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The neighborhood of register X

clrx incx action
0 0 X  X
0 1 X  X+ 1
1 0 X  0

We model the truth table with
a multiplexer. For incrementing
X we use an adder.

With Logisim we can
model the neighborhood of
Register and also simulate.

113

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The neighborhood of register Y

clry ldy action
0 0 Y  Y
0 1 Y  X
1 0 Y 0

In a similar way, we can
model the neighborhood
of Y.

114

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The datapath

We combine the two
neighborhoods.

Note that both neighborhoods
are Moore machines.

The Moore machine for X has 2
inputs: clrx and incx. Since we have
chosen an 8-bit register for X,
we have 256 possible states.
The output function is the identity
function.

The connection of the two is
again a Moore machine. Thus,
The datapath is a Moore machine.

115

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Register-transfer statements define the
data path

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

dp:

116

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The control logic needs to provide the
control signals

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

117

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Truth table of output logic of controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

state clrx incx clry ldy out

A 1 0 1 0 4
B 0 0 0 1 3
C 0 1 0 1 2

118

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Truth table of output logic of controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

state clrx incx clry ldy out

0 0 1 0 1 0 100
0 1 0 0 0 1 011
1 0 0 1 0 1 010

A 00
B 01
C 10

119

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Truth table of next-state logic of
controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

state clrx incx clry ldy out

0 0 1 0 1 0 100
0 1 0 0 0 1 011
1 0 0 1 0 1 010

state in next_state
A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 A

120

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Truth table of next-state logic of
controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

state clrx incx clry ldy out

0 0 1 0 1 0 100
0 1 0 0 0 1 011
1 0 0 1 0 1 010

A 00
B 01
C 10

s1 s0 in ns1 ns0
0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 0 0

121

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Truth table of next-state logic of
controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

s1 s0 clrx incx clry ldy out

0 0 1 0 1 0 100
0 1 0 0 0 1 011
1 0 0 1 0 1 010

A 00
B 01
C 10

s1 s0 in ns1 ns0
0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 0 0
1 1 0 x x
1 1 1 x x 122

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

From truth table to implementation

s1 s0 clrx incx clry ldy out

0 0 1 0 1 0 100
0 1 0 0 0 1 011
1 0 0 1 0 1 010
1 1 x x x x xxx

s1 s0 in ns1 ns0
0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 0 0
1 1 0 x x
1 1 1 x x

outl:

nsl:

123

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The controller and the data path

124

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

That’s it.

• In principle, we can describe any synchronous
automaton with an ASM diagram.

• In principle, every synchronous digital system can
be described by a collection of ASM diagrams.

• The transformation from an ASM diagram into a
logic circuit is defined by an algorithm; we call
this algorithm “synthesis”.

125

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Hands-On Example

126

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

City of
Tiny Lights

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Overview

• Design a finite state machine from a functional
description to logic layer.

• Decompose an ASM-diagram into data path
and control logic.

• Connect several finite state machines into a
larger finite state machine.

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

A traffic light

• Usually green for cars and red for pedestrians.

• A pedestrian wants to cross.

• The pedestrian hits a button and it gets green for
her.

• Shortly afterwards, the cars get green light again.

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

An ASM-diagram of
a simple traffic light

Pedestrians have access to
an input button to ask for
green light.

cars pedestrians

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

An ASM-diagram of
a simple traffic light

ped

1

0

A

B

C

D

E

F

car
P

car
P

car
P

car
P

car
P

car
P

Pedestrians have access to
an input button to ask for
green light.

Input button is called “ped”.

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

An ASM-diagram of
a simple traffic light

outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

outC = 001
outP = 100

outC is output visible to cars

outP is output visible to pedestrians

“ped” is an input button for
pedestrians to request green light

A

B

C

D

E

F

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Next-state table
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

state ped next_state

A 0 A
A 1 B
B x C
C x D
D x E
E x F
F x A

“x” stands for “don’t care”

6 states: Thus, we need at least 3 bits
for storing the state.

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Next-state table
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

s2 s1 s0 ped ns2 ns1 ns0

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 x 0 1 0
0 1 0 x 0 1 1
0 1 1 x 1 0 0
1 0 0 x 1 0 1
1 0 1 x 0 0 0
1 1 0 x x x x
1 1 1 x x x x

“x” stands for “don’t care”

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Next-state table (Logisim)
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Synthesis mit Logisim
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Next-state function
synthesized in Logisim

outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Output table for cars
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Output logic for cars
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Output table for ped’s
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Output logic for ped’s
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Traffic light (part 1)

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The problem

• A nasty pedestrian sticks a stick into the “ped”-button and
leaves.

• Thus, the cars are always held by red, although there is no
pedestrian.

• We want to avoid this “denial-of-service” attack.

• We add a second algorithmic state machine which tries to
take care of this problem: After a pedestrian has hit the
button and got green, there is a time delay before it can get
green again.

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Pedestrians hit “button”ped= 0

ped = 1
z 9

ped = 0
z  z – 1

butt

ped = 0

1

0

A

B

C

D

z==0
01

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Data pathped= 0

ped = 1
z 9

ped = 0
z  z – 1

butt

ped = 0

1

0

A

B

C

D

z==0
01

z 9
z z – 1
z z

z == 0

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Multiplexerped= 0

ped = 1
z 9

ped = 0
z  z – 1

butt

ped = 0

1

0

A

B

C

D

z==0
01

ld9 decr
0 0 z  z
0 1 z  z – 1
1 0 z  9

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Multiplexerped= 0

ped = 1
z 9

ped = 0
z  z – 1

butt

ped = 0

1

0

A

B

C

D

z==0
01

ld9 decr action at posedge of clk

0 0 z  z
0 1 z  z – 1
1 0 z  9

z == 0

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Data path is a Moore machine

next-state logic

output logic

inputs

output

state

clock

inputs

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Changing the ASM
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1

butt

ped = 0
ld9 = 0

decr = 0

1

0

A

B

C

D

zeq0
01

ld9 decr action at posedge of clk

0 0 z  z
0 1 z  z – 1
1 0 z  9
1 1 not defined z == 0

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Next-state logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1

butt

ped = 0
ld9 = 0

decr = 0

1

0

A

B

C

D

zeq0
01

state butt zeq0 next_state

A 0 x A
A 1 x B
B x x C
C x x D
D x 0 C
D x 1 A

“x” stands for “don’t care”

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Next-state logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1

butt

ped = 0
ld9 = 0

decr = 0

1

0

A

B

C

D

zeq0
01

t1 t0 butt zeq0 nt1 nt0

0 0 0 x 0 0
0 0 1 x 0 1
0 1 x x 1 0
1 0 x x 1 1
1 1 x 0 1 0
1 1 x 1 0 0

“x” stands for “don’t care”

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Next-state logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1

butt

ped = 0
ld9 = 0

decr = 0

1

0

A

B

C

D

zeq0
01

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Next-state logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1

butt

ped = 0
ld9 = 0

decr = 0

1

0

A

B

C

D

zeq0
01

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Output logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1

butt

ped = 0
ld9 = 0

decr = 0

1

0

00

01

10

11

zeq0
01

t1 t0 ld9 decr ped

0 0 0 0 0
0 1 1 0 1
1 0 0 1 0
1 1 0 0 0

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Output logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1

butt

ped = 0
ld9 = 0

decr = 0

1

0

00

01

10

11

zeq0
01

t1 t0 ld9 decr ped

0 0 0 0 0
0 1 1 0 1
1 0 0 1 0
1 1 0 0 0

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Output logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1

butt

ped = 0
ld9 = 0

decr = 0

1

0

00

01

10

11

zeq0
01

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Output logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1

butt

ped = 0
ld9 = 0

decr = 0

1

0

00

01

10

11

zeq0
01

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The controller
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1

butt

ped = 0
ld9 = 0

decr = 0

1

0

00

01

10

11

zeq0
01

The controller is a Moore machine.

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Data path + controllerped= 0

ped = 1
z 9

ped = 0
z  z – 1

butt

ped = 0

1

0

A

B

C

D

z==0
01

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Both ASMs
together

ped= 0

ped = 1
z 9

ped = 0
z  z – 1

butt

ped = 0

1

0

A

B

C

D

z==0
01

outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

ped

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

City of
tiny lights

