
Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Computer Organization and
Networks

Chapter 3: Finite State Machine

IAIK http:// www.iaik.tugraz.at
1

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Whyshould you read this primer?

With this set of slides I guide you through the
essence of designing finite state machines.

With each slide, you get drawn into the topic
step by step.

I use very simple examples in order to
concentrate on the essence.

2

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

L ŀǎǎǳƳŜ ǘƘŀǘ ȅƻǳ ƪƴƻǿΧ

ÅwƘŀǘ ǘƘŜ ǘŜǊƳ άfunctionέ ƳŜŀƴǎ ƛƴ ƳŀǘƘŜƳŀǘƛŎǎΦ

Åthat in logic functions we use only 0s and 1s.

Åthat a logic function can be uniquely described
with a truth table.

Åthat a truth table lists all possible input
combinations in an ordered fashion.

ÅtƘŀǘ ǘƘŜ ǎȅƳōƻƭ άϤέ ƛǎ ǳǎŜŘ ŦƻǊ ƭƻƎƛŎ ƴŜƎŀǘƛƻƴΦ

ÅtƘŀǘ ǘƘŜ ǎȅƳōƻƭ άϧέ ƛǎ ǳǎŜŘ ŦƻǊ ƭƻƎƛŎ ANDing.

ÅtƘŀǘ ǘƘŜ ǎȅƳōƻƭ άμέ ƛǎ ǳǎŜŘ ŦƻǊ ƭƻƎƛŎ ORing.

3

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Finite State Machines (FSMs)

ÅC{aǎ ŀǊŜ ǘƘŜ άǿƻǊƪ ƘƻǊǎŜέ ƛƴ digital systems.

ÅFSMs can be implemented with hardware.

Å²Ŝ ƭƻƻƪ ŀǘ άsynchronousέ C{aǎ ƻƴƭȅΥ

ï¢ƘŜ άŎƭƻŎƪ ǎƛƎƴŀƭέ ŎƻƴǘǊƻƭǎ ǘƘŜ ŀŎǘƛƻƴ ƻǾŜǊ ǘƛƳŜ

ÅC{aǎ Ŏŀƴ ōŜ ŘŜǎŎǊƛōŜŘ ǿƛǘƘ ǘƘǊŜŜ Ƴŀƛƴ άǾƛŜǿǎέΥ

ïThe functionalǾƛŜǿ ǿƛǘƘ ǘƘŜ άǎǘŀǘŜ ŘƛŀƎǊŀƳέ

ïThe timingǾƛŜǿ ǿƛǘƘ ǘƘŜ άǘƛƳƛƴƎ ŘƛŀƎǊŀƳέ

ïThe structuralǾƛŜǿ ǿƛǘƘ ǘƘŜ άƭƻƎƛŎ ŎƛǊŎǳƛǘ ŘƛŀƎǊŀƳέ

4

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Time flows continuously

time

5

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We cut time into slices

time

6

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Time slices are strictly ordered

i i+1 i+2iτ1 iτ2

time

7

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Clock signal

i i+1 i+2iτ1 iτ2

0

1

time

We use the ŎƭƻŎƪ ǎƛƎƴŀƭ όάŎƭƪέύ in order to advance
time from slice to slice.

8

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Rising clock edge

i i+1 i+2iτ1 iτ2

0

1

time

With rising clock edges we define the transition
between neighboring time slices.
The negative clock edges have no importance.

9

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Clock period

i i+1 i+2iτ1 iτ2

0

1

clock
period

time

We call the time between two rising clock
ŜŘƎŜǎ ŀƭǎƻ άŎƭƻŎƪ ǇŜǊƛƻŘέΦ
Most often, clock periods have the same
length. But this is not necessarily the case.10

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Synchronous
finite state machine
(= automaton)

FSM

clk

A synchronous FSM ƛǎ ŎƭƻŎƪŜŘ ōȅ ŀ ŎƭƻŎƪ ǎƛƎƴŀƭ όάŎƭƪέύΦ
In each clock period, the machine is in a defined (current) state.
With each rising edge of the clock signal, the machine advances
to a defined next state.

²Ŝ ŀǊŜ ƛƴǘŜǊŜǎǘŜŘ ƛƴ άfinite state machinesέ όC{aǎύΦ
FSMs have only a finite number of states.

11

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The sequence of
states can be
defined in a
state diagram.

12

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

State diagram:

We denote the
states with circles
and give them
symbolic names,
e.g. A, B, and C.

A

B

C

13

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

State diagram:

We define one of
the states as the
initial state.

A

B

C

14

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Iƴ ǘƘŜ ōŜƎƛƴƴƛƴƎΧ

0

1

time

Initially, i.e. shortly after switching on the FSM and before the
first rising edge of clock, there is the initial period. In this period,
tƘŜ C{a ƛǎ ƛƴ ǘƘŜ άinitial stateέΦ

initial period

A

15

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

State diagram:

With arrows we
define the sequence
of states.

A

B

C

16

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The sequence of
states can also
bedefined in a
state transition
table.

A

B

C

current
state

A
B
C

next
state

B
C
A

17

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram

0

1

B

clk

A CC BAstate

time

Initially, the FSM is in the initial state A.

With every positive clock edge, the next state
becomes the current state.

An FSM has alwaysa next state.
18

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

In order to technically realize
όάƛƳǇƭŜƳŜƴǘέύ ŀ ǎǘŀǘŜ ŘƛŀƎǊŀƳΣ

we start by giving
each state
a unique number.

A

B

C

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Popular
state-encoding schemes

ÅBinary encoding

ïneeds minimum amount of flip-flops.

ÅOne-hot encoding

ïTends to have a simpler next-state logic.

20

A

B

C

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Binary encoding

00

01

10

state

A
B
C

number

00
01
10

21

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

For a Verilog example of this FSM see

chapter_03/example_00/01_fsm_moore_no_input.v

22

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Binary encoding:
The state transition table
has also only binary numbers.

00

01

10

current
state

00
01
10

next
state

01
10
00

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We also enter the unused
ŎƻƳōƛƴŀǘƛƻƴ ά11έΦ
This state does not exist.
άxέ ǎǘŀƴŘǎ ŦƻǊ ά5ƻƴΩǘ ŎŀǊŜέΦ

00

01

10

current
state

00
01
10
11

next
state

01
10
00
xx

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define names for
the two state bits, e.g.
s1, s0.

00

01

10

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Each state bit is storedin a flipflop

flipflop stored value

26

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

A flipflop storesa new value, when a
rising edge occurs on the clockinput

flipflop stored value

clock

27

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The flipflop stores the value, which it
sees on its input.

flipflop stored value

clock

input

28

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Summary: A D-flip-flop samples its input
value D and stores this value when

a rising edge of clk occurs

stored value

clk

input D Q

Thus, a D-type flipflop can be seen as a 1-bit photo camera.29

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

In our example, we need 2 flip-flops
for storing the state bits.

s1

clk

next s1 D1 Q1

Flipflopswhich can store several bits
ŀǊŜ ŀƭǎƻ ŎŀƭƭŜŘ άregistersέΦ

s0next s0 Q0D0

30

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We use the state transition table as a
άƭƻƻƪǳǇ ǘŀōƭŜέΧ

s1

clk

D1 Q1

s0Q0D0

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

next s1

next s0

31

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

ΧŀƴŘ ǘƘǳǎ ŦƛƴŘ ƻǳǘ ǘƘŜ next state

s1

clk

D1 Q1

s0Q0D0

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

32

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

At each positive edge of clk, the next
state gets stored as the current state.

s1

clk

D1 Q1

s0Q0D0

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

33

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Lƴ ƻǊŘŜǊ ǘƻ ƎŜǘ ǘƘŜ ƛƴƛǘƛŀƭ ǎǘŀǘŜ άллέΣ ǿŜ ǳǎŜ flipflops
ǿƛǘƘ ŀƴ άasynchronous reset inputέΦ {ƘƻǊǘƭȅ ŀŦǘŜǊ
ǎǿƛǘŎƘƛƴƎ ƻƴ ǘƘŜ ŎƛǊŎǳƛǘΣ ǿŜ ŀǇǇƭȅ άaresetέΦ

s1

clk

D1 Q1

s0Q0D0

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x x

areset
34

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The state transition function in this example can be
derived from the truth table:

next s0 = (~s1) & (~s0)

s1

clk

D1 Q1

s0Q0D0

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
x 0

areset
²Ŝ ǎŜǘ ǘƘŜ ŘƻƴΩǘ ŎŀǊŜ ǘƻ лΦ 35

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The state transition function:
next s0 = (~s1) & (~s0)
next s1 = (~s1) & s0

s1

clk

D1 Q1

s0Q0D0

current
s1 s0

0 0
0 1
1 0
1 1

next
s1 s0

0 1
1 0
0 0
0 0

areset
²Ŝ ǎŜǘ ǘƘƛǎ ŘƻƴΩǘ ŎŀǊŜ ǾŀƭǳŜ ŀƭǎƻ ǘƻ лΦ36

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Structural diagram of the FSM:
State-transition function,

storage elements, and feedback of state.

next s0 = (~s1) & (~s0)

next s1 = (~s1) & s0

clk

D1 Q1

Q0D0

areset

next s0

next s1

s0

s1

37

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence so far

State diagram:

άƴŜȄǘ ǎǘŀǘŜέ ƛǎ ŀ ŦǳƴŎǘƛƻƴ ƻŦ (ŎǳǊǊŜƴǘύ άǎǘŀǘŜέ

State transitions:

ǘƘŜ άƴŜȄǘ ǎǘŀǘŜέ ōŜŎƻƳŜǎ όǘƘŜ ŎǳǊǊŜƴǘύ άǎǘŀǘŜέ
on the rising edge of the clock

38

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The FSM modeled and simulated
with Logisim

39

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Inputs

40

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

FSMs can also have inputs influencing
the transition to the next state

A

B

Cin == 0

in == 1

next state = f(state, input)

In this example we see
that the one-ōƛǘ ƛƴǇǳǘ άƛƴέ
influences the choice of
the state after B.

41

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

FSMs can also have inputs influencing
the transition to the next state

A

B
C

in == 0

in == 1

next state = f(state, input)

In this example we see
that the one-ōƛǘ ƛƴǇǳǘ άinέ
influences the choice of
the state after B.

The following state can also
be the same as the current state.

in == 0

in == 1

42

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The state transition table

A

B
C

in == 0

in == 1

in == 0

in == 1

current in next
state state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

43

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

For a Verilog example of this FSM see

chapter_03/example_00/01_fsm_moore_no_output.v

44

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram. Example 1

0

1

B

clk

B CA CAstate

time

in

For a timing diagram, we need to choose values for the input
sƛƎƴŀƭ άƛƴέΦ hƴƭȅ ŀŦǘŜǊ ǎƻƳŜ ŎƘƻƛŎŜ ŦƻǊ άƛƴέ ǿŜ Ŏŀƴ ŘŜǊƛǾŜ ǘƘŜ
sequence of states from the state diagram.

0

1

45

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram. Example 2

0

1

B

clk

C BC AAstate

time

in

For a timing diagram, we need to choose values for the input
ǎƛƎƴŀƭ άƛƴέΦ hƴƭȅ ŀŦǘŜǊ ǎƻƳŜ ŎƘƻƛŎŜ ŦƻǊ άƛƴέ ǿŜ Ŏŀƴ ŘŜǊƛǾŜ ǘƘŜ
sequence of states from the state diagram.

0

1

46

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram. Example 3

0

1

B

clk

A BC BAstate

time

in

For a timing diagram, we need to choose values for the input
ǎƛƎƴŀƭ άƛƴέΦ hƴƭȅ ŀŦǘŜǊ ǎƻƳŜ ŎƘƻƛŎŜ ŦƻǊ άƛƴέ ǿŜ Ŏŀƴ ŘŜǊƛǾŜ ǘƘŜ
sequence of states from the state diagram.

0

1

47

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Binary state encoding: Instead of
symbolic state names we use numbers

00

01
10

in == 0

in == 1

in == 0

in == 1

current in next
state state

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0

48

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

άммέ ŘƻŜǎ ƴƻǘ ŜȄƛǎǘΥ ²Ŝ ǳǎŜ ά5ƻƴΩǘ
/ŀǊŜέ ŀǎ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ǎǘŀǘŜ

00

in == 0

in == 1

in == 0

in == 1

current in next
state state

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

01
10

49

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

I have ordered the lines in the state
transition table from 0 to 7. This makes

ƛǘ ŜŀǎƛŜǊ ǘƻ άǊŜŀŘέ ǘƘŜ ǘŀōƭŜΦ

00

in == 0

in == 1

in == 0

in == 1

current in next
state state

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

0
1
2
3
4
5
6
7

01
10

50

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

²Ŝ Ŏŀƭƭ ǘƘŜ ǎǘŀǘŜ ōƛǘǎ άǎмέ ŀƴŘ άǎлέ

00

in == 0

in == 1

in == 0

in == 1

current in next
s1 s0 s1 s0

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

0
1
2
3
4
5
6
7

01
10

51

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

next s0 = ((~s1) & (~s0) & (~in))
| ((~s1) & (~s0) & in)

current in next
s1 s0 s1 s0

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x 0
1 1 1 x 0

0
1
2
3
4
5
6
7

00

in == 0

in == 1

in == 0

in == 1

01
10

52

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

next s1 = ((~s1) & s0 & in)
| (s1 & (~s0) & in)

current in next
s1 s0 s1 s0

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 0 0
1 1 1 0 0

0
1
2
3
4
5
6
7

00

in == 0

in == 1

in == 0

in == 1

01
10

53

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Structural diagram of the FSM

next s0 = ((~s1) & (~s0) & (~in))
| ((~s1) &

(~s0) & in)

next s1 = ((~s1) & s0 & in)
| (s1 & (~s0) & in)

clk

D1 Q1

Q0D0

areset

next s0

next s1

s0

s1

in

54

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Implementation with Logisim

55

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Outputs

56

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

FSMs typically also have outputs

4

3
2

A

B C

in == 0

in == 1

output = f(state)

In this example we see
that the outputs are a function
of the state. We write the output
values into the circles.

We call such machines also
άMoore machinesέΥ

in == 0

in == 1

57

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define the outputs with the
άƻǳǘǇǳǘ ŦǳƴŎǘƛƻƴέ

4

3
2

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state output
A 4
B 3
C 2

C

in == 0

in == 1

58

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram. Example 3

0

1

B

clk

A AC BAstate

time

in

For a timing diagram, we need to choose values for the input
ǎƛƎƴŀƭ άƛƴέΦ hƴƭȅ ŀŦǘŜǊ ǎƻƳŜ ŎƘƻƛŎŜ ŦƻǊ άƛƴέ ǿŜ Ŏŀƴ ŘŜǊƛǾŜ ǘƘŜ
sequence of states from the state diagram.

0

1

out 4 3 2 4 3 4

59

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define the outputs with binary
values

100

011
010

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state output
A 100 (=4)
B 011 (=3)
C 010 (=2)

C

in == 0

in == 1

60

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define the outputs with binary
values

100

011
010

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state o2 o1 o0
A 1 0 0
B 0 1 1
C 0 1 0

C

in == 0

in == 1

61

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

For a Verilog example of this FSM see

chapter_03/example_00/01_fsm_moore_with_output_function.v

62

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Binary state encoding: We define the
outputs with binary values

100

011
010

A

B

in == 0

in == 1

state o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

C

in == 0

in == 1

63

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define the outputs with binary
values

100

011
010

A

B

in == 0

in == 1

s1 s0 o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

o2 = ~s1 & ~s0

C

in == 0

in == 1

64

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define the outputs with binary
values

100

011
010

A

B

in == 0

in == 1

s1 s0 o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

C

in == 0

in == 1

65

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We define the outputs with binary
values

100

011
010

A

B

in == 0

in == 1

s1 s0 o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

o0 = ~s1 & s0

C

in == 0

in == 1

66

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Structural diagram of the FSM

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
|(s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

67

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Implementation with Logisim

68

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

69

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

a state transition is
caused by the
clock signal. 70

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

a state transition is
caused by the
clock signal.

²ƛǘƘ άŀǊŜǎŜǘέ ǿŜ Ŏŀƴ
initialize the ASM
όάƛƴƛǘƛŀƭ ǎǘŀǘŜέύΦ

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

71

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

With the next-state function f
we compute the next state:
next state = f(state, input)

72

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

With the output function we compute the
output values:

output = g(state)

73

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

74

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

There exist 2 types of machines:
check out the

LITTLE but IMPORTANT difference

ÅMoore Machines
ïnext state = function of state and input

ïoutput = function of state

ÅMealy Machines
ïnext state = function of state and input

ïoutput = function of state and input

75

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

76

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Mealy Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

output = g(state, input)

77

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

An example for a Mealy Machine

A

B

in == 0
out = 3

in == 1
out = 1

out = 4 out = 2

We write the output values
next to the transition arrows,
since the output depends not
only on the state, but can also
depend on the input.

C

in == 0

in == 1
out = 0

78

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The state transitions are the same as in the
previous example with the Moore Machine

A

B

in == 0
out = 3

in == 1
out = 1

out = 4

current in next
state state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

C

in == 1
out = 0

out = 2
in == 0

79

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The output function

A

B

in == 0
out = 3

in == 1
out = 1

out = 4

The output function can be derived from the state diagram.
output = g(state, input)

state in output
A 0 4
A 1 4
B 0 3
B 1 1
C 0 2
C 1 0

out = 2
in == 0

in == 1
out = 0

C

80

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Timing diagram

0

1

B

clk

A AC BAstate

time

in

For a timing diagram, we need to choose values for the input
ǎƛƎƴŀƭ άƛƴέΦ hƴƭȅ ŀŦǘŜǊ ǎƻƳŜ ŎƘƻƛŎŜ ŦƻǊ άƛƴέ ǿŜ Ŏŀƴ ŘŜǊƛǾŜ ǘƘŜ
sequence of states from the state diagram. We see here also, how
ǘƘŜ ǾŀƭǳŜ ƻŦ άƛƴέ ƛƳƳŜŘƛŀǘŜƭȅ ƛƴŦƭǳŜƴŎŜǎ ǘƘŜ ǾŀƭǳŜ ƻŦ άƻǳǘέΦ

0

1

out 4 3 2 4 3 41 3 1 0

81

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

For a Verilog example of this FSM see

chapter_03/example_00/04_fsm_mealy.v

82

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Binary encoding: Re-writing the output
table with binary values.

A

B

in == 0
out = 3

in == 1
out = 1

out = 4

And completing the table with the unused bit combinations.

s1 s0 in o2 o1 o0
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 x x x
1 1 1 x x x

out = 2
in == 0

in == 1
out = 0

C

83

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We can derive the logic functions for
o2, o1, and o0

s1 s0 in o2 o1 o0
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 x x x
1 1 1 x x x

o2 = ~s1 & ~s0

84

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We can derive the logic functions for
o2, o1, and o0

s1 s0 in o2 o1 o0
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 x x x
1 1 1 x x x

o2 = ~s1 & ~s0

o1 = (~s1 & s0 & ~in)
| (s1 & ~s0 & ~in)

85

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We can derive the logic functions for
o2, o1, and o0

s1 s0 in o2 o1 o0
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 x x x
1 1 1 x x x

o2 = ~s1 & ~s0

o1 = (~s1 & s0 & ~in)
| (s1 & ~s0 & ~in)

o0 = ~s1 & s0

86

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The result

next s0 = (~s1 & ~s0 & ~in)
| (~s1 & ~s0 &

in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0 & ~in)
| (s1 & ~s0 &

~in)

o0 = ~s1 & s0

o2

o1

o0

87

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Modeling with Logisim

88

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We can combine machines

ÅCombining Moore Machines causes no problem.
We get another Moore Machine.

ÅCombining a Moore Machine with a Mealy
Machine causes also no problem. We get a
Moore Machine or a Mealy Machine.

ÅCombining two Mealy Machines can cause
troubles: One needs to avoid combinational
loops!

89

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The combination of two Moore Machines creates
again a (more complex) Moore Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

90

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

We can even connect More Machines in
a loop-like fashion

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

91

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The combination of a Moore Machine with a Mealy Machine
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

92

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The combination of a Moore Machine with a Mealy Machine
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

93

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The combination of two Mealy Machines ƛǎ άdangerousέΥ
¸ƻǳ ƴŜŜŘ ǘƻ ŀǾƻƛŘ άŎƻƳōƛƴŀǘƛƻƴŀƭ ƭƻƻǇǎέ

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

94

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

¢ƘŜ ŎƻƳōƛƴŀǘƛƻƴ ƻŦ ǘǿƻ aŜŀƭȅ aŀŎƘƛƴŜǎ ƛǎ άŘŀƴƎŜǊƻǳǎέΥ ¸ƻǳ
ƴŜŜŘ ǘƻ ŀǾƻƛŘ άcombinational loopsέ

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

95

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Summary

ÅAll digital logic can in principle be built with Moore
Machines and Mealy Machines.

ÅYou always start by defining the function with a state
diagram.

ÅIf you choose values for the input signal(s), then you can
derive the timing diagram by using the state diagram.

ÅFrom a state diagram, you can always derive a circuit
diagram.

96

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Algorithmic State Machines

97

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Algorithmic State Machines (ASMs)

ÅASMs are a useful extension to finite state
machines

ÅASMs allow to specify a system consisting of a
data path together with its control logic

ÅAll FSM state diagrams have an equivalent
ASM diagram

98

Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

FSM state diagram Ą ASM diagrams

4

3
2

B

Cin == 0

in == 1

out = 4A

out = 3

out = 2

in

1

A

B

C

0

99

