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Computer Organization and 
Networks

Chapter 3: Finite State Machine

IAIK http://www.iaik.tugraz.at
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Why should you read this primer?

With this set of slides I guide you through the 
essence of designing finite state machines. 

With each slide, you get drawn into the topic 
step by step.

I use very simple examples in order to 
concentrate on the essence.   
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I assume that you know…

• what the term “function” means in mathematics.

• that in logic functions we use only 0s and 1s.

• that a logic function can be uniquely described 
with a truth table.

• that a truth table lists all possible input 
combinations in an ordered fashion. 

• that the symbol “~” is used for logic negation.

• that the symbol “&” is used for logic ANDing.

• that the symbol “|” is used for logic ORing.
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Finite State Machines (FSMs)

• FSMs are the “work horse” in digital systems.

• FSMs can be implemented with hardware.

• We look at “synchronous” FSMs only:

– The “clock signal” controls the action over time

• FSMs can be described with three main “views”:

– The functional view with the “state diagram”

– The timing view with the “timing diagram”

– The structural view with the “logic circuit diagram”
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Time flows continuously

time
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We cut time into slices

time
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Time slices are strictly ordered

i i+1 i+2i—1 i—2  

time
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Clock signal

i i+1 i+2i—1 i—2  

0

1

time

We use the clock signal (“clk”) in order to advance
time from slice to slice. 
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Rising clock edge

i i+1 i+2i—1 i—2  

0

1

time

With rising clock edges we define the transition 
between neighboring time slices.
The negative clock edges have no importance.
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Clock period

i i+1 i+2i—1 i—2  

0

1

clock
period 

time

We call the time between two rising clock 
edges also “clock period”.
Most often, clock periods have the same 
length. But this is not necessarily the case. 10



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Synchronous 
finite state machine 
(= automaton)

FSM

clk 

A synchronous FSM is clocked by a clock signal (“clk”). 
In each clock period, the machine is in a defined (current) state.
With each rising edge of the clock signal, the machine advances 
to a defined next state.

We are interested in “finite state machines” (FSMs). 
FSMs have only a finite number of states. 
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The sequence of
states can be
defined in a 
state diagram.
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State diagram:

We denote the
states with circles
and give them 
symbolic names,
e.g. A, B, and C.

A

B

C
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State diagram:

We define one of 
the states as the
initial state.

A

B

C
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In the beginning…

0

1

time

Initially, i.e. shortly after switching on the FSM and before the 
first rising edge of clock, there is the initial period. In this period,
the FSM is in the “initial state”.  

initial period 

A

15
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State diagram:

With arrows we
define the sequence
of states.

A

B

C
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The sequence of
states can also 
be defined in a 
state transition
table.

A

B

C

current 
state

A
B
C

next 
state

B
C
A

17
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Timing diagram

0

1

B

clk

A CC BAstate

time

Initially, the FSM is in the initial state A.

With every positive clock edge, the next state
becomes the current state.

An FSM has always a next state.
18
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In order to technically realize 
(“implement”) a state diagram, 

we start by giving
each state 
a unique number. 

A 

B

C
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Popular 
state-encoding schemes

• Binary encoding

– needs minimum amount of flip-flops.

• One-hot encoding

– Tends to have a simpler next-state logic.

20
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B
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Binary encoding

00

01

10

state

A
B
C

number

00
01
10

21
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For a Verilog example of this FSM see 

chapter_03/example_00/01_fsm_moore_no_input.v

22



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Binary encoding:
The state transition table
has also only binary numbers.

00

01

10

current 
state

00
01
10

next 
state

01
10
00
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We also enter the unused 
combination “11”. 
This state does not exist. 
“x” stands for “Don’t care”.

00

01

10

current 
state

00
01
10
11

next 
state

01
10
00
xx
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We define names for
the two state bits, e.g. 
s1, s0.

00

01

10

current 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x
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Each state bit is stored in a flipflop

flipflop stored value

26
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A flipflop stores a new value, when a 
rising edge occurs on the clock input

flipflop stored value

clock

27
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The flipflop stores the value, which it 
sees on its input.

flipflop stored value

clock

input

28
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Summary: A D-flip-flop samples its input 
value D and stores this value when 

a rising edge of clk occurs

stored value

clk

input D Q

Thus, a D-type flipflop can be seen as a 1-bit photo camera.29
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In our example, we need 2 flip-flops 
for storing the state bits.

s1

clk

next s1 D1 Q1

Flipflops which can store several bits 
are also called “registers”.

s0next s0 Q0D0

30
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We use the state transition table as a 
“lookup table”…

s1

clk

D1 Q1

s0Q0D0

current 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

next s1

next s0

31
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…and thus find out the next state

s1

clk

D1 Q1

s0Q0D0

current 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

32
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At each positive edge of clk, the next 
state gets stored as the current state.

s1

clk

D1 Q1

s0Q0D0

current 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

33
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In order to get the initial state “00”, we use flipflops
with an “asynchronous reset input”. Shortly after 

switching on the circuit, we apply “areset”. 

s1

clk

D1 Q1

s0Q0D0

current 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

areset
34
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The state transition function in this example can be 
derived from the truth table:

next s0 = (~s1) & (~s0) 

s1

clk

D1 Q1

s0Q0D0

current 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   0

areset
We set the don’t care to 0. 35
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The state transition function:
next s0 = (~s1) & (~s0)
next s1  =  (~s1) & s0 

s1

clk

D1 Q1

s0Q0D0

current 
s1   s0

0     0
0     1
1     0
1     1

next 
s1  s0

0 1
1 0
0 0
0 0

areset
We set this don’t care value also to 0. 36
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Structural diagram of the FSM:
State-transition function, 

storage elements, and feedback of state.

next s0 = (~s1) & (~s0)

next s1 =  (~s1) & s0   

clk

D1 Q1

Q0D0

areset

next s0

next s1

s0

s1

37
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Essence so far

State diagram:

“next state” is a function of (current) “state”

State transitions:

the “next state” becomes (the current) “state” 
on the rising edge of the clock

38



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

The FSM modeled and simulated 
with Logisim

39
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Inputs

40
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FSMs can also have inputs influencing 
the transition to the next state

A

B

Cin == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in” 
influences the choice of
the state after B.

41
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FSMs can also have inputs influencing 
the transition to the next state

A

B
C

in == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in” 
influences the choice of
the state after B.

The following state can also
be the same as the current state.

in == 0

in == 1

42
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The state transition table

A

B
C

in == 0

in == 1

in == 0

in == 1

current    in       next
state                state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

43
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For a Verilog example of this FSM see 

chapter_03/example_00/01_fsm_moore_no_output.v
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Timing diagram. Example 1

0

1

B

clk

B CA CAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

45
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Timing diagram. Example 2

0

1

B

clk

C BC AAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

46
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Timing diagram. Example 3

0

1

B

clk

A BC BAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

47
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Binary state encoding: Instead of 
symbolic state names we use numbers

00

01
10

in == 0

in == 1

in == 0

in == 1

current      in        next
state                      state

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0

48
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“11” does not exist: We use “Don’t 
Care” as the following state

00

in == 0

in == 1

in == 0

in == 1

current      in        next
state                      state

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

01
10

49
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I have ordered the lines in the state 
transition table from 0 to 7. This makes

it easier to “read” the table.

00

in == 0

in == 1

in == 0

in == 1

current      in        next
state                      state

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

0
1
2
3
4
5
6
7

01
10

50
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We call the state bits “s1” and “s0”

00

in == 0

in == 1

in == 0

in == 1

current in          next
s1  s0                      s1   s0

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

0
1
2
3
4
5
6
7

01
10

51
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next s0 =    ( (~s1) & (~s0) & (~in))
| ( (~s1) & (~s0) &     in )

current      in          next
s1  s0                      s1   s0

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x 0
1 1 1 x 0

0
1
2
3
4
5
6
7

00

in == 0

in == 1

in == 0

in == 1

01
10

52
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next s1 =   ((~s1) &    s0   & in)
| ( s1  & (~s0) & in)

current      in          next
s1  s0                      s1   s0

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 0 0
1 1 1 0 0

0
1
2
3
4
5
6
7

00

in == 0

in == 1

in == 0

in == 1

01
10

53
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Structural diagram of the FSM 

next s0 =    ( (~s1) & (~s0) & (~in)) 
| ( (~s1) & 

(~s0) &     in )

next s1 =   ((~s1) &    s0   & in) 
| ( s1  & (~s0) & in) 

clk

D1 Q1

Q0D0

areset

next s0

next s1

s0

s1

in

54
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Implementation with Logisim

55



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Outputs

56
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FSMs typically also have outputs

4

3
2

A

B C

in == 0

in == 1

output = f(state)

In this example we see
that the outputs are a function
of the state. We write the output
values into the circles. 

We call such machines also
“Moore machines”:

in == 0

in == 1

57
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We define the outputs with the 
“output function”

4

3
2

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state    output
A 4
B 3
C 2

C

in == 0

in == 1

58
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Timing diagram. Example 3

0

1

B

clk

A AC BAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram.

0

1

out 4 3 2 4 3 4

59
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We define the outputs with binary 
values

100

011
010

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state    output
A 100       (=4)
B 011       (=3)
C 010       (=2)

C

in == 0

in == 1

60
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We define the outputs with binary 
values

100

011
010

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state    o2 o1 o0 
A 1   0    0       
B 0   1    1      
C 0   1    0      

C

in == 0

in == 1

61
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For a Verilog example of this FSM see 

chapter_03/example_00/01_fsm_moore_with_output_function.v
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Binary state encoding: We define the 
outputs with binary values

100

011
010

A

B

in == 0

in == 1

state    o2 o1 o0 
0   0      1   0    0       
0   1 0   1    1      
1   0 0   1    0      

C

in == 0

in == 1

63
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We define the outputs with binary 
values

100

011
010

A

B

in == 0

in == 1

s1  s0    o2 o1 o0 
0   0      1   0    0       
0   1 0   1    1      
1   0 0   1    0      

o2 = ~s1 & ~s0  

C

in == 0

in == 1

64
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We define the outputs with binary 
values

100

011
010

A

B

in == 0

in == 1

s1  s0    o2 o1 o0 
0   0      1   0    0       
0   1 0   1 1      
1   0 0   1 0      

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

C

in == 0

in == 1

65
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We define the outputs with binary 
values

100

011
010

A

B

in == 0

in == 1

s1  s0    o2 o1 o0
0   0      1   0    0       
0   1 0   1    1
1   0 0   1    0      

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

o0 = ~s1 & s0

C

in == 0

in == 1

66
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Structural diagram of the FSM 

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 &  

in)

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
|( s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

67
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Implementation with Logisim

68
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 & 

in)

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

the state is 
stored 
in a register

69
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 &  

in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

the state is 
stored 
in a register

a state transition is 
caused by the 
clock signal. 70
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Essence of Moore Machines

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

the state is 
stored 
in a register

a state transition is 
caused by the 
clock signal.

With “areset” we can 
initialize the ASM
(“initial state”). 

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 &  

in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

71
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 &  

in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

With the next-state function f 
we compute the next state:
next state = f(state, input)

72
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 &  

in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

With the output function we compute the
output values:

output = g(state)

73
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Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

74
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There exist 2 types of machines: 
check out the 

LITTLE but IMPORTANT difference

• Moore Machines
– next state = function of state and input

– output = function of state

• Mealy Machines
– next state = function of state and input

– output = function of state and input 

75
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Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

76
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Essence of Mealy Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

output = g(state, input)

77
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An example for a Mealy Machine

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4 out = 2

We write the output values
next to the transition arrows,
since the output depends not
only on the state, but can also 
depend on the input. 

C

in == 0

in == 1
out = 0

78
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The state transitions are the same as in the 
previous example with the Moore Machine

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4

current    in       next
state                state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

C

in == 1
out = 0

out = 2
in == 0
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The output function

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4

The output function can be derived from the state diagram.
output = g(state, input)

state   in    output
A       0 4
A       1            4
B 0            3
B       1            1
C 0            2
C       1            0

out = 2
in == 0

in == 1
out = 0

C
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Timing diagram

0

1

B

clk

A AC BAstate

time

in

For a timing diagram, we need to choose values for the input
signal “in”. Only after some choice for “in” we can derive the
sequence of states from the state diagram. We see here also, how
the value of “in” immediately influences the value of “out”.

0

1

out 4 3 2 4 3 41 3 1 0

81



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

For a Verilog example of this FSM see 

chapter_03/example_00/04_fsm_mealy.v
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Binary encoding: Re-writing the output 
table with binary values. 

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4

And completing the table with the unused bit combinations.

s1  s0   in   o2  o1  o0
0    0    0 1 0     0
0 0    1    1     0     0
0    1 0 0     1     1
0    1    1    0     0     1
1    0    0    0     1     0
1 0    1    0 0 0
1    1    0    x     x      x
1    1    1    x     x      x

out = 2
in == 0

in == 1
out = 0

C
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We can derive the logic functions for 
o2, o1, and o0

s1  s0   in   o2  o1  o0
0    0    0 1 0     0
0 0    1    1 0     0
0    1 0 0     1     1
0    1    1    0     0     1
1    0    0    0     1     0
1 0    1    0 0 0
1    1    0    x     x      x
1    1    1    x     x      x

o2 = ~s1 & ~s0 
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We can derive the logic functions for 
o2, o1, and o0

s1  s0   in   o2  o1  o0
0    0    0 1 0     0
0 0    1    1 0     0
0    1 0 0     1 1
0    1    1    0     0     1
1    0    0    0     1 0
1 0    1    0     0     0
1    1    0    x     x      x
1    1    1    x     x      x

o2 = ~s1 & ~s0

o1 = (~s1 &  s0 & ~in) 
| (s1 & ~s0 & ~in) 
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We can derive the logic functions for 
o2, o1, and o0

s1  s0   in   o2  o1  o0
0    0    0 1 0     0
0 0    1    1 0     0
0    1 0 0     1 1
0    1    1    0     0     1
1    0    0    0     1 0
1 0    1    0     0 0
1    1    0    x     x      x
1    1    1    x     x      x

o2 = ~s1 & ~s0

o1 = (~s1 &  s0 & ~in) 
| (s1 & ~s0 & ~in) 

o0 = ~s1 & s0
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The result

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 &  

in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0 & ~in) 
| (s1 & ~s0 & 

~in)

o0 = ~s1 & s0

o2

o1

o0
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Modeling with Logisim
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We can combine machines

• Combining Moore Machines causes no problem. 
We get another Moore Machine.

• Combining a Moore Machine with a Mealy 
Machine causes also no problem. We get a 
Moore Machine or a Mealy Machine.

• Combining two Mealy Machines can cause 
troubles: One needs to avoid combinational 
loops!
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The combination of two Moore Machines creates 
again a (more complex) Moore Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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We can even connect More Machines in
a loop-like fashion

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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The combination of a Moore Machine with a Mealy Machine 
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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The combination of a Moore Machine with a Mealy Machine 
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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The combination of two Mealy Machines is “dangerous”: 
You need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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The combination of two Mealy Machines is “dangerous”: You 
need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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Summary

• All digital logic can in principle be built with Moore 
Machines and Mealy Machines.

• You always start by defining the function with a state 
diagram.

• If you choose values for the input signal(s), then you can 
derive the timing diagram by using the state diagram. 

• From a state diagram, you can always derive a circuit 
diagram.
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Algorithmic State Machines
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Algorithmic State Machines (ASMs)

• ASMs are a useful extension to finite state 
machines

• ASMs allow to specify a system consisting of a 
data path together with its control logic

• All FSM state diagrams have an equivalent 
ASM diagram
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FSM state diagram  ASM diagrams

4

3
2

B

Cin == 0

in == 1

out = 4A

out = 3

out = 2

in

1

A

B

C

0
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Mealy Machines

A

B

C
in == 0
out = 3 

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3
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Mealy Machines

A

B

C
in == 0
out = 3 

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3
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Register-Transfer Statements

• Register-transfer statements define the change of a value stored in 
a register.

• Values in registers can only change at the active (= rising) edge of 
clock.

• We denote “register-transfer statements” with a “left arrow” (“”)

• Example:   “a  x” means that the value in the register “a” gets the 
value of “x” at the “next” active (= rising) edge of clock.

• We can specify register-transfer statement in an ASM diagram.
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ASM diagram with two register-transfer 
statements

out = 4
X  0

out = 3

out = 2
X  X + 1

in

1

A

B

C

0

The value stored in register X gets 0 
at the state transition 
from state A to state B.

The value in register X gets incremented 
at the state transition following state C.

The value in register X does not change
upon leaving state B.
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Timing diagram

0

1

B

clk

A BC BAstate

in
0

1

out 4 3 2 4 3 3

X ? 0 0 1 0 0

104



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

“=“ versus “”

• With the equal sign (“=“) we denote that the 
output of the FSM has a certain value during a 
particular state.

• With the left-arrow (“”) we denote a 
register-transfer statement: The register value 
left of the arrow changes to whatever is 
defined right of the arrow upon the next 
active (= rising) edge of clock.
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Several register-transfer statements can 
be specified within one state

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

in

1

A

B

C

0

The values stored in register X and 
register Y become 0 at the state transition 
from state A to state B.

The value in register X gets incremented 
at the state transition following state C.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.

106



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Several register-transfer statements can 
be specified within one state

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

The values stored in register X and 
register Y become 0 at the state transition 
from state A to state B.

The value in register X gets incremented 
at the state transition following state C.
Register Y gets the “old” value from X; i.e
the value before X gets incremented.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.
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For a Verilog example of this ASM graph see 

chapter_03/example_00/05_asm.v
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Manual Synthesis of an ASM Graph in 
Logisim
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Register-transfer statements define the 
data path

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

X  0
X  X
X  X+ 1

Y 0
Y X

The “neighborhood” of register X:

The “neighborhood” of register Y:
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The neighborhood of register X

Case 0: X  X
Case 1: X  X+ 1
Case 2: X  0

We need to distinguish
between 3 cases.
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The neighborhood of register X

clrx incx action
0 0 X  X
0  1 X  X+ 1
1  0 X  0

We use binary notation
and name the two binary
select variables.
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The neighborhood of register X

clrx incx action
0 0 X  X
0  1 X  X+ 1
1  0 X  0

We model the truth table with
a multiplexer. For incrementing
X we use an adder.

With Logisim we can
model the neighborhood of 
Register and also simulate.
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The neighborhood of register Y

clry ldy action
0 0 Y  Y
0  1 Y  X
1  0 Y 0

In a similar way, we can
model the neighborhood
of Y. 
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The datapath

We combine the two
neighborhoods.

Note that both neighborhoods
are Moore machines.

The Moore machine for X has 2
inputs: clrx and incx. Since we have
chosen an 8-bit register for X,
we have 256 possible states.
The output function is the identity
function.  

The connection of the two is
again a Moore machine. Thus,
The datapath is a Moore machine.
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Register-transfer statements define the 
data path

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

dp:
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The control logic needs to provide the 
control signals

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

117



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Truth table of output logic of controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

state      clrx  incx  clry    ldy   out

A 1 0 1 0 4
B 0 0 0 1 3
C 0 1 0 1 2 

118



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Truth table of output logic of controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

state      clrx  incx  clry    ldy     out

0  0 1 0 1 0 100
0  1 0 0 0 1 011
1  0 0 1 0 1 010 

A   00
B   01
C   10 
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Truth table of next-state logic of 
controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

state      clrx  incx  clry    ldy     out

0  0 1 0 1 0 100
0  1 0 0 0 1 011
1  0 0 1 0 1 010 

state      in          next_state
A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 A

120



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Truth table of next-state logic of 
controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

state      clrx  incx  clry    ldy     out

0  0 1 0 1 0 100
0  1 0 0 0 1 011
1  0 0 1 0 1 010 

A   00
B   01
C   10 

s1   s0      in         ns1   ns0
0     0 0 0     1
0     0 1 0     1
0     1 0 0     0
0     1 1 1     0
1     0 0 0     0
1     0 1 0     0
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Truth table of next-state logic of 
controller

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

s1 s0      clrx  incx  clry    ldy     out

0  0 1 0 1 0 100
0  1 0 0 0 1 011
1  0 0 1 0 1 010 

A   00
B   01
C   10 

s1   s0      in         ns1   ns0
0     0 0 0     1
0     0 1 0     1
0     1 0 0     0
0     1 1 1     0
1     0 0 0     0
1     0 1 0     0
1     1       0             x     x
1     1       1             x     x 122
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From truth table to implementation

s1 s0      clrx  incx  clry    ldy     out

0  0 1 0 1 0 100
0  1 0 0 0 1 011
1  0 0 1 0 1 010
1  1 x x x x xxx 

s1   s0      in         ns1   ns0
0     0 0 0     1
0     0 1 0     1
0     1 0 0     0
0     1 1 1     0
1     0 0 0     0
1     0 1 0     0
1     1       0             x     x
1     1       1             x     x

outl:

nsl:
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The controller and the data path
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That’s it.

• In principle, we can describe any synchronous 
automaton with an ASM diagram.

• In principle, every synchronous digital system can 
be described by a collection of ASM diagrams.

• The transformation from an ASM diagram into a 
logic circuit is defined by an algorithm; we call 
this algorithm “synthesis”.
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Hands-On Example

126
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City of 
Tiny Lights
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Overview

• Design a finite state machine from a functional 
description to logic layer.

• Decompose an ASM-diagram into data path 
and control logic.

• Connect several finite state machines into a 
larger finite state machine.
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A traffic light

• Usually green for cars and red for pedestrians.

• A pedestrian wants to cross.

• The pedestrian hits a button and it gets green for 
her.

• Shortly afterwards, the cars get green light again.
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An ASM-diagram of 
a simple traffic light

Pedestrians  have access to 
an input button to ask for 
green light.

cars pedestrians
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An ASM-diagram of 
a simple traffic light

ped

1

0

A

B

C

D

E

F

car
P

car
P

car
P

car
P

car
P

car
P

Pedestrians  have access to 
an input button to ask for 
green light.

Input button is called “ped”.



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

An ASM-diagram of 
a simple traffic light

outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

outC = 001
outP = 100

outC is output visible to cars

outP is output visible to pedestrians

“ped” is an input button for
pedestrians to request green light

A

B

C

D

E

F
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Next-state table 
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

state    ped next_state

A         0 A
A 1 B
B x C
C x D
D x E
E x F
F x A

“x” stands for “don’t care”

6 states: Thus, we need at least 3 bits 
for storing the state.



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Next-state table 
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

s2 s1 s0    ped ns2 ns1 ns0

0  0  0           0 0 0 0
0  0  0 1 0 0 1
0  0  1 x 0 1 0
0  1  0 x 0 1 1
0  1  1 x 1 0 0
1  0  0 x 1 0 1
1  0  1 x 0 0 0
1  1  0           x x x x
1  1  1 x x x x

“x” stands for “don’t care”
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Next-state table (Logisim) 
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F
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Synthesis mit Logisim
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F
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Next-state function
synthesized in Logisim

outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F
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Output table for cars
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F
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Output logic for cars
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F
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Output table for ped’s
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F
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Output logic for ped’s
outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F
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Traffic light (part 1)
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The problem

• A nasty pedestrian sticks a stick into the “ped”-button and 
leaves.

• Thus, the cars are always held by red, although there is no 
pedestrian.

• We want to avoid this “denial-of-service” attack.

• We add a second algorithmic state machine which tries to 
take care of this problem: After a pedestrian has hit the 
button and got green, there is a time delay before it can get 
green again. 
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Pedestrians hit “button”ped= 0

ped = 1
z 9

ped = 0
z  z – 1 

butt

ped = 0

1

0

A

B

C

D

z==0
01
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Data pathped= 0

ped = 1
z 9

ped = 0
z  z – 1 

butt

ped = 0

1

0

A

B

C

D

z==0
01

z 9
z z – 1
z z

z == 0
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Multiplexerped= 0

ped = 1
z 9

ped = 0
z  z – 1 

butt

ped = 0

1

0

A

B

C

D

z==0
01

ld9    decr
0         0       z  z
0         1       z  z – 1
1         0       z  9
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Multiplexerped= 0

ped = 1
z 9

ped = 0
z  z – 1 

butt

ped = 0

1

0

A

B

C

D

z==0
01

ld9    decr action at posedge of clk

0         0       z  z
0         1       z  z – 1
1         0       z  9

z == 0
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Data path is a Moore machine

next-state logic

output logic

inputs

output

state

clock

inputs
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Changing the ASM
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1 

butt

ped = 0
ld9 = 0

decr = 0

1

0

A

B

C

D

zeq0
01

ld9    decr action at posedge of clk

0         0       z  z
0         1       z  z – 1
1         0       z  9
1         1       not defined z == 0
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Next-state logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1 

butt

ped = 0
ld9 = 0

decr = 0

1

0

A

B

C

D

zeq0
01

state    butt  zeq0      next_state

A         0        x A
A 1 x B
B x x C
C x x D
D x 0 C
D x 1 A

“x” stands for “don’t care”
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Next-state logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1 

butt

ped = 0
ld9 = 0

decr = 0

1

0

A

B

C

D

zeq0
01

t1 t0    butt  zeq0      nt1   nt0

0  0         0         x 0 0
0  0 1 x 0 1
0  1 x x 1 0
1  0 x x 1 1
1  1 x 0 1 0
1  1 x 1 0 0

“x” stands for “don’t care”
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Next-state logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1 

butt

ped = 0
ld9 = 0

decr = 0

1

0

A

B

C

D

zeq0
01
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Next-state logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1 

butt

ped = 0
ld9 = 0

decr = 0

1

0

A

B

C

D

zeq0
01
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Output logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1 

butt

ped = 0
ld9 = 0

decr = 0

1

0

00

01

10

11

zeq0
01

t1 t0    ld9    decr ped

0  0        0         0 0
0  1 1 0 1
1  0 0 1 0
1  1 0 0 0
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Output logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1 

butt

ped = 0
ld9 = 0

decr = 0

1

0

00

01

10

11

zeq0
01

t1 t0    ld9    decr ped

0  0        0         0 0
0  1 1 0 1
1  0 0 1 0
1  1 0 0 0
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Output logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1 

butt

ped = 0
ld9 = 0

decr = 0

1

0

00

01

10

11

zeq0
01



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Output logic
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1 

butt

ped = 0
ld9 = 0

decr = 0

1

0

00

01

10

11

zeq0
01
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The controller
ped= 0
ld9 = 0

decr = 0

ped = 1
ld9 = 1

decr = 0

ped = 0
ld9 = 0

decr = 1 

butt

ped = 0
ld9 = 0

decr = 0

1

0

00

01

10

11

zeq0
01

The controller is a Moore machine.
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Data path + controllerped= 0

ped = 1
z 9

ped = 0
z  z – 1 

butt

ped = 0

1

0

A

B

C

D

z==0
01
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Both ASMs 
together

ped= 0

ped = 1
z 9

ped = 0
z  z – 1 

butt

ped = 0

1

0

A

B

C

D

z==0
01

outC = 001
outP = 100

outC = 010
outP = 100

outC = 100
outP = 010

ped

outC = 100
outP = 001

outC = 100
outP = 010

outC = 010
outP = 100

1

0

A

B

C

D

E

F

ped
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City of 
tiny lights


