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Whyshould you read this primer?

With this set of slides I guide you through the 
essence of designing finite state machines. 

With each slide, you get drawn into the topic 
step by step.

I use very simple examples in order to 
concentrate on the essence.   
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L ŀǎǎǳƳŜ ǘƘŀǘ ȅƻǳ ƪƴƻǿΧ

ÅwƘŀǘ ǘƘŜ ǘŜǊƳ άfunctionέ ƳŜŀƴǎ ƛƴ ƳŀǘƘŜƳŀǘƛŎǎΦ

Åthat in logic functions we use only 0s and 1s.

Åthat a logic function can be uniquely described 
with a truth table.

Åthat a truth table lists all possible input 
combinations in an ordered fashion. 

ÅtƘŀǘ ǘƘŜ ǎȅƳōƻƭ άϤέ ƛǎ ǳǎŜŘ ŦƻǊ ƭƻƎƛŎ ƴŜƎŀǘƛƻƴΦ

ÅtƘŀǘ ǘƘŜ ǎȅƳōƻƭ άϧέ ƛǎ ǳǎŜŘ ŦƻǊ ƭƻƎƛŎ ANDing.

ÅtƘŀǘ ǘƘŜ ǎȅƳōƻƭ άμέ ƛǎ ǳǎŜŘ ŦƻǊ ƭƻƎƛŎ ORing.
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Finite State Machines (FSMs)

ÅC{aǎ ŀǊŜ ǘƘŜ άǿƻǊƪ ƘƻǊǎŜέ ƛƴ digital systems.

ÅFSMs can be implemented with hardware.

Å²Ŝ ƭƻƻƪ ŀǘ άsynchronousέ C{aǎ ƻƴƭȅΥ

ï¢ƘŜ άŎƭƻŎƪ ǎƛƎƴŀƭέ ŎƻƴǘǊƻƭǎ ǘƘŜ ŀŎǘƛƻƴ ƻǾŜǊ ǘƛƳŜ

ÅC{aǎ Ŏŀƴ ōŜ ŘŜǎŎǊƛōŜŘ ǿƛǘƘ ǘƘǊŜŜ Ƴŀƛƴ άǾƛŜǿǎέΥ

ïThe functionalǾƛŜǿ ǿƛǘƘ ǘƘŜ άǎǘŀǘŜ ŘƛŀƎǊŀƳέ

ïThe timingǾƛŜǿ ǿƛǘƘ ǘƘŜ άǘƛƳƛƴƎ ŘƛŀƎǊŀƳέ

ïThe structuralǾƛŜǿ ǿƛǘƘ ǘƘŜ άƭƻƎƛŎ ŎƛǊŎǳƛǘ ŘƛŀƎǊŀƳέ
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Time flows continuously

time
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We cut time into slices

time
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Time slices are strictly ordered

i i+1 i+2iτ1 iτ2  

time
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Clock signal

i i+1 i+2iτ1 iτ2  

0

1

time

We use the ŎƭƻŎƪ ǎƛƎƴŀƭ όάŎƭƪέύ in order to advance
time from slice to slice. 
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Rising clock edge

i i+1 i+2iτ1 iτ2  

0

1

time

With rising clock edges we define the transition 
between neighboring time slices.
The negative clock edges have no importance.
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Clock period

i i+1 i+2iτ1 iτ2  

0

1

clock
period 

time

We call the time between two rising clock 
ŜŘƎŜǎ ŀƭǎƻ άŎƭƻŎƪ ǇŜǊƛƻŘέΦ
Most often, clock periods have the same 
length. But this is not necessarily the case.10
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Synchronous 
finite state machine 
(= automaton)

FSM

clk 

A synchronous FSM ƛǎ ŎƭƻŎƪŜŘ ōȅ ŀ ŎƭƻŎƪ ǎƛƎƴŀƭ όάŎƭƪέύΦ 
In each clock period, the machine is in a defined (current) state.
With each rising edge of the clock signal, the machine advances 
to a defined next state.

²Ŝ ŀǊŜ ƛƴǘŜǊŜǎǘŜŘ ƛƴ άfinite state machinesέ όC{aǎύΦ 
FSMs have only a finite number of states. 
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The sequence of
states can be
defined in a 
state diagram.
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State diagram:

We denote the
states with circles
and give them 
symbolic names,
e.g. A, B, and C.

A

B

C
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State diagram:

We define one of 
the states as the
initial state.

A

B

C

14
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Iƴ ǘƘŜ ōŜƎƛƴƴƛƴƎΧ

0

1

time

Initially, i.e. shortly after switching on the FSM and before the 
first rising edge of clock, there is the initial period. In this period,
tƘŜ C{a ƛǎ ƛƴ ǘƘŜ άinitial stateέΦ  

initial period 

A
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State diagram:

With arrows we
define the sequence
of states.

A

B

C

16
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The sequence of
states can also 
bedefined in a 
state transition
table.

A

B

C

current 
state

A
B
C

next 
state

B
C
A

17
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Timing diagram

0

1

B

clk

A CC BAstate

time

Initially, the FSM is in the initial state A.

With every positive clock edge, the next state
becomes the current state.

An FSM has alwaysa next state.
18
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In order to technically realize 
όάƛƳǇƭŜƳŜƴǘέύ ŀ ǎǘŀǘŜ ŘƛŀƎǊŀƳΣ 

we start by giving
each state 
a unique number. 

A 

B

C
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Popular 
state-encoding schemes

ÅBinary encoding

ïneeds minimum amount of flip-flops.

ÅOne-hot encoding

ïTends to have a simpler next-state logic.

20
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Binary encoding

00

01

10

state

A
B
C

number

00
01
10

21
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For a Verilog example of this FSM see 

chapter_03/example_00/01_fsm_moore_no_input.v

22



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Binary encoding:
The state transition table
has also only binary numbers.

00

01

10

current 
state

00
01
10

next 
state

01
10
00
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We also enter the unused 
ŎƻƳōƛƴŀǘƛƻƴ ά11έΦ 
This state does not exist. 
άxέ ǎǘŀƴŘǎ ŦƻǊ ά5ƻƴΩǘ ŎŀǊŜέΦ

00

01

10

current 
state

00
01
10
11

next 
state

01
10
00
xx
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We define names for
the two state bits, e.g. 
s1, s0.

00

01

10

current 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x
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Each state bit is storedin a flipflop

flipflop stored value

26
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A flipflop storesa new value, when a 
rising edge occurs on the clockinput

flipflop stored value

clock

27
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The flipflop stores the value, which it 
sees on its input.

flipflop stored value

clock

input

28
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Summary: A D-flip-flop samples its input 
value D and stores this value when 

a rising edge of clk occurs

stored value

clk

input D Q

Thus, a D-type flipflop can be seen as a 1-bit photo camera.29
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In our example, we need 2 flip-flops 
for storing the state bits.

s1

clk

next s1 D1 Q1

Flipflopswhich can store several bits 
ŀǊŜ ŀƭǎƻ ŎŀƭƭŜŘ άregistersέΦ

s0next s0 Q0D0

30
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We use the state transition table as a 
άƭƻƻƪǳǇ ǘŀōƭŜέΧ

s1

clk

D1 Q1

s0Q0D0

current 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

next s1

next s0

31
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ΧŀƴŘ ǘƘǳǎ ŦƛƴŘ ƻǳǘ ǘƘŜ next state

s1

clk

D1 Q1

s0Q0D0

current 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

32
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At each positive edge of clk, the next 
state gets stored as the current state.

s1

clk

D1 Q1

s0Q0D0

current 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

33
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Lƴ ƻǊŘŜǊ ǘƻ ƎŜǘ ǘƘŜ ƛƴƛǘƛŀƭ ǎǘŀǘŜ άллέΣ ǿŜ ǳǎŜ flipflops
ǿƛǘƘ ŀƴ άasynchronous reset inputέΦ {ƘƻǊǘƭȅ ŀŦǘŜǊ 
ǎǿƛǘŎƘƛƴƎ ƻƴ ǘƘŜ ŎƛǊŎǳƛǘΣ ǿŜ ŀǇǇƭȅ άaresetέΦ 

s1

clk

D1 Q1

s0Q0D0

current 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   x

areset
34
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The state transition function in this example can be 
derived from the truth table:

next s0 = (~s1) & (~s0) 

s1

clk

D1 Q1

s0Q0D0

current 
s1   s0

0     0
0     1 
1     0
1     1

next 
s1  s0

0   1
1   0
0   0
x   0

areset
²Ŝ ǎŜǘ ǘƘŜ ŘƻƴΩǘ ŎŀǊŜ ǘƻ лΦ 35
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The state transition function:
next s0 = (~s1) & (~s0)
next s1  =  (~s1) & s0 

s1

clk

D1 Q1

s0Q0D0

current 
s1   s0

0     0
0     1
1     0
1     1

next 
s1  s0

0 1
1 0
0 0
0 0

areset
²Ŝ ǎŜǘ ǘƘƛǎ ŘƻƴΩǘ ŎŀǊŜ ǾŀƭǳŜ ŀƭǎƻ ǘƻ лΦ36
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Structural diagram of the FSM:
State-transition function, 

storage elements, and feedback of state.

next s0 = (~s1) & (~s0)

next s1 =  (~s1) & s0   

clk

D1 Q1

Q0D0

areset

next s0

next s1

s0

s1

37
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Essence so far

State diagram:

άƴŜȄǘ ǎǘŀǘŜέ ƛǎ ŀ ŦǳƴŎǘƛƻƴ ƻŦ (ŎǳǊǊŜƴǘύ άǎǘŀǘŜέ

State transitions:

ǘƘŜ άƴŜȄǘ ǎǘŀǘŜέ ōŜŎƻƳŜǎ όǘƘŜ ŎǳǊǊŜƴǘύ άǎǘŀǘŜέ 
on the rising edge of the clock

38
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The FSM modeled and simulated 
with Logisim

39
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Inputs

40
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FSMs can also have inputs influencing 
the transition to the next state

A

B

Cin == 0

in == 1

next state = f(state, input)

In this example we see
that the one-ōƛǘ ƛƴǇǳǘ άƛƴέ 
influences the choice of
the state after B.

41
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FSMs can also have inputs influencing 
the transition to the next state

A

B
C

in == 0

in == 1

next state = f(state, input)

In this example we see
that the one-ōƛǘ ƛƴǇǳǘ άinέ 
influences the choice of
the state after B.

The following state can also
be the same as the current state.

in == 0

in == 1

42
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The state transition table

A

B
C

in == 0

in == 1

in == 0

in == 1

current    in       next
state                state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

43



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

For a Verilog example of this FSM see 

chapter_03/example_00/01_fsm_moore_no_output.v
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Timing diagram. Example 1

0

1

B

clk

B CA CAstate

time

in

For a timing diagram, we need to choose values for the input
sƛƎƴŀƭ άƛƴέΦ hƴƭȅ ŀŦǘŜǊ ǎƻƳŜ ŎƘƻƛŎŜ ŦƻǊ άƛƴέ ǿŜ Ŏŀƴ ŘŜǊƛǾŜ ǘƘŜ
sequence of states from the state diagram.

0

1

45
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Timing diagram. Example 2

0

1

B

clk

C BC AAstate

time

in

For a timing diagram, we need to choose values for the input
ǎƛƎƴŀƭ άƛƴέΦ hƴƭȅ ŀŦǘŜǊ ǎƻƳŜ ŎƘƻƛŎŜ ŦƻǊ άƛƴέ ǿŜ Ŏŀƴ ŘŜǊƛǾŜ ǘƘŜ
sequence of states from the state diagram.

0

1

46
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Timing diagram. Example 3

0

1

B

clk

A BC BAstate

time

in

For a timing diagram, we need to choose values for the input
ǎƛƎƴŀƭ άƛƴέΦ hƴƭȅ ŀŦǘŜǊ ǎƻƳŜ ŎƘƻƛŎŜ ŦƻǊ άƛƴέ ǿŜ Ŏŀƴ ŘŜǊƛǾŜ ǘƘŜ
sequence of states from the state diagram.

0

1

47
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Binary state encoding: Instead of 
symbolic state names we use numbers

00

01
10

in == 0

in == 1

in == 0

in == 1

current      in        next
state                      state

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0

48
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άммέ ŘƻŜǎ ƴƻǘ ŜȄƛǎǘΥ ²Ŝ ǳǎŜ ά5ƻƴΩǘ 
/ŀǊŜέ ŀǎ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ǎǘŀǘŜ

00

in == 0

in == 1

in == 0

in == 1

current      in        next
state                      state

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

01
10

49



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

I have ordered the lines in the state 
transition table from 0 to 7. This makes

ƛǘ ŜŀǎƛŜǊ ǘƻ άǊŜŀŘέ ǘƘŜ ǘŀōƭŜΦ

00

in == 0

in == 1

in == 0

in == 1

current      in        next
state                      state

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

0
1
2
3
4
5
6
7

01
10

50
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²Ŝ Ŏŀƭƭ ǘƘŜ ǎǘŀǘŜ ōƛǘǎ άǎмέ ŀƴŘ άǎлέ

00

in == 0

in == 1

in == 0

in == 1

current in          next
s1  s0                      s1   s0

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

0
1
2
3
4
5
6
7

01
10

51



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

next s0 =    ( (~s1) & (~s0) & (~in))
| ( (~s1) & (~s0) &     in )

current      in          next
s1  s0                      s1   s0

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x 0
1 1 1 x 0

0
1
2
3
4
5
6
7

00

in == 0

in == 1

in == 0

in == 1

01
10

52
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next s1 =   ((~s1) &    s0   & in)
| ( s1  & (~s0) & in)

current      in          next
s1  s0                      s1   s0

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 0 0
1 1 1 0 0

0
1
2
3
4
5
6
7

00

in == 0

in == 1

in == 0

in == 1

01
10

53
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Structural diagram of the FSM 

next s0 =    ( (~s1) & (~s0) & (~in)) 
| ( (~s1) & 

(~s0) &     in )

next s1 =   ((~s1) &    s0   & in) 
| ( s1  & (~s0) & in) 

clk

D1 Q1

Q0D0

areset

next s0

next s1

s0

s1

in

54
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Implementation with Logisim

55
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Outputs

56
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FSMs typically also have outputs

4

3
2

A

B C

in == 0

in == 1

output = f(state)

In this example we see
that the outputs are a function
of the state. We write the output
values into the circles. 

We call such machines also
άMoore machinesέΥ

in == 0

in == 1

57
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We define the outputs with the 
άƻǳǘǇǳǘ ŦǳƴŎǘƛƻƴέ

4

3
2

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state    output
A 4
B 3
C 2

C

in == 0

in == 1

58
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Timing diagram. Example 3

0

1

B

clk

A AC BAstate

time

in

For a timing diagram, we need to choose values for the input
ǎƛƎƴŀƭ άƛƴέΦ hƴƭȅ ŀŦǘŜǊ ǎƻƳŜ ŎƘƻƛŎŜ ŦƻǊ άƛƴέ ǿŜ Ŏŀƴ ŘŜǊƛǾŜ ǘƘŜ
sequence of states from the state diagram.

0

1

out 4 3 2 4 3 4

59
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We define the outputs with binary 
values

100

011
010

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state    output
A 100       (=4)
B 011       (=3)
C 010       (=2)

C

in == 0

in == 1

60
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We define the outputs with binary 
values

100

011
010

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state    o2 o1 o0 
A 1   0    0       
B 0   1    1      
C 0   1    0      

C

in == 0

in == 1

61
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For a Verilog example of this FSM see 

chapter_03/example_00/01_fsm_moore_with_output_function.v
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Binary state encoding: We define the 
outputs with binary values

100

011
010

A

B

in == 0

in == 1

state    o2 o1 o0 
0   0      1   0    0       
0   1 0   1    1      
1   0 0   1    0      

C

in == 0

in == 1

63
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We define the outputs with binary 
values

100

011
010

A

B

in == 0

in == 1

s1  s0    o2 o1 o0 
0   0      1   0    0       
0   1 0   1    1      
1   0 0   1    0      

o2 = ~s1 & ~s0  

C

in == 0

in == 1

64
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We define the outputs with binary 
values

100

011
010

A

B

in == 0

in == 1

s1  s0    o2 o1 o0 
0   0      1   0    0       
0   1 0   1 1      
1   0 0   1 0      

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

C

in == 0

in == 1

65
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We define the outputs with binary 
values

100

011
010

A

B

in == 0

in == 1

s1  s0    o2 o1 o0
0   0      1   0    0       
0   1 0   1    1
1   0 0   1    0      

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

o0 = ~s1 & s0

C

in == 0

in == 1
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Structural diagram of the FSM 

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 &  

in)

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
|( s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

67



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Implementation with Logisim
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 & 

in)

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

the state is 
stored 
in a register

69



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 &  

in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

the state is 
stored 
in a register

a state transition is 
caused by the 
clock signal. 70
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Essence of Moore Machines

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

the state is 
stored 
in a register

a state transition is 
caused by the 
clock signal.

²ƛǘƘ άŀǊŜǎŜǘέ ǿŜ Ŏŀƴ 
initialize the ASM
όάƛƴƛǘƛŀƭ ǎǘŀǘŜέύΦ 

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 &  

in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 &  

in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

With the next-state function f 
we compute the next state:
next state = f(state, input)

72



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 &  

in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

With the output function we compute the
output values:

output = g(state)
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Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state
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There exist 2 types of machines: 
check out the 

LITTLE but IMPORTANT difference

ÅMoore Machines
ïnext state = function of state and input

ïoutput = function of state

ÅMealy Machines
ïnext state = function of state and input

ïoutput = function of state and input 
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Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state
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Essence of Mealy Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

output = g(state, input)
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An example for a Mealy Machine

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4 out = 2

We write the output values
next to the transition arrows,
since the output depends not
only on the state, but can also 
depend on the input. 

C

in == 0

in == 1
out = 0
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The state transitions are the same as in the 
previous example with the Moore Machine

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4

current    in       next
state                state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

C

in == 1
out = 0

out = 2
in == 0
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The output function

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4

The output function can be derived from the state diagram.
output = g(state, input)

state   in    output
A       0 4
A       1            4
B 0            3
B       1            1
C 0            2
C       1            0

out = 2
in == 0

in == 1
out = 0

C
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Timing diagram

0

1

B

clk

A AC BAstate

time

in

For a timing diagram, we need to choose values for the input
ǎƛƎƴŀƭ άƛƴέΦ hƴƭȅ ŀŦǘŜǊ ǎƻƳŜ ŎƘƻƛŎŜ ŦƻǊ άƛƴέ ǿŜ Ŏŀƴ ŘŜǊƛǾŜ ǘƘŜ
sequence of states from the state diagram. We see here also, how
ǘƘŜ ǾŀƭǳŜ ƻŦ άƛƴέ ƛƳƳŜŘƛŀǘŜƭȅ ƛƴŦƭǳŜƴŎŜǎ ǘƘŜ ǾŀƭǳŜ ƻŦ άƻǳǘέΦ

0

1

out 4 3 2 4 3 41 3 1 0
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For a Verilog example of this FSM see 

chapter_03/example_00/04_fsm_mealy.v
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Binary encoding: Re-writing the output 
table with binary values. 

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4

And completing the table with the unused bit combinations.

s1  s0   in   o2  o1  o0
0    0    0 1 0     0
0 0    1    1     0     0
0    1 0 0     1     1
0    1    1    0     0     1
1    0    0    0     1     0
1 0    1    0 0 0
1    1    0    x     x      x
1    1    1    x     x      x

out = 2
in == 0

in == 1
out = 0

C
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We can derive the logic functions for 
o2, o1, and o0

s1  s0   in   o2  o1  o0
0    0    0 1 0     0
0 0    1    1 0     0
0    1 0 0     1     1
0    1    1    0     0     1
1    0    0    0     1     0
1 0    1    0 0 0
1    1    0    x     x      x
1    1    1    x     x      x

o2 = ~s1 & ~s0 
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We can derive the logic functions for 
o2, o1, and o0

s1  s0   in   o2  o1  o0
0    0    0 1 0     0
0 0    1    1 0     0
0    1 0 0     1 1
0    1    1    0     0     1
1    0    0    0     1 0
1 0    1    0     0     0
1    1    0    x     x      x
1    1    1    x     x      x

o2 = ~s1 & ~s0

o1 = (~s1 &  s0 & ~in) 
| (s1 & ~s0 & ~in) 
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We can derive the logic functions for 
o2, o1, and o0

s1  s0   in   o2  o1  o0
0    0    0 1 0     0
0 0    1    1 0     0
0    1 0 0     1 1
0    1    1    0     0     1
1    0    0    0     1 0
1 0    1    0     0 0
1    1    0    x     x      x
1    1    1    x     x      x

o2 = ~s1 & ~s0

o1 = (~s1 &  s0 & ~in) 
| (s1 & ~s0 & ~in) 

o0 = ~s1 & s0
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The result

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 & ~s0 &  

in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0 & ~in) 
| (s1 & ~s0 & 

~in)

o0 = ~s1 & s0

o2

o1

o0
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Modeling with Logisim

88
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We can combine machines

ÅCombining Moore Machines causes no problem. 
We get another Moore Machine.

ÅCombining a Moore Machine with a Mealy 
Machine causes also no problem. We get a 
Moore Machine or a Mealy Machine.

ÅCombining two Mealy Machines can cause 
troubles: One needs to avoid combinational 
loops!
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The combination of two Moore Machines creates 
again a (more complex) Moore Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state
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We can even connect More Machines in
a loop-like fashion

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state
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The combination of a Moore Machine with a Mealy Machine 
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state
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The combination of a Moore Machine with a Mealy Machine 
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state
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The combination of two Mealy Machines ƛǎ άdangerousέΥ 
¸ƻǳ ƴŜŜŘ ǘƻ ŀǾƻƛŘ άŎƻƳōƛƴŀǘƛƻƴŀƭ ƭƻƻǇǎέ

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

94



Rechnerorganisation, Stefan Mangard 2019, Slides by KC Posch

¢ƘŜ ŎƻƳōƛƴŀǘƛƻƴ ƻŦ ǘǿƻ aŜŀƭȅ aŀŎƘƛƴŜǎ ƛǎ άŘŀƴƎŜǊƻǳǎέΥ ¸ƻǳ 
ƴŜŜŘ ǘƻ ŀǾƻƛŘ άcombinational loopsέ

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put
logic

outputnext
state
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Summary

ÅAll digital logic can in principle be built with Moore 
Machines and Mealy Machines.

ÅYou always start by defining the function with a state 
diagram.

ÅIf you choose values for the input signal(s), then you can 
derive the timing diagram by using the state diagram. 

ÅFrom a state diagram, you can always derive a circuit 
diagram.
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Algorithmic State Machines
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Algorithmic State Machines (ASMs)

ÅASMs are a useful extension to finite state 
machines

ÅASMs allow to specify a system consisting of a 
data path together with its control logic

ÅAll FSM state diagrams have an equivalent 
ASM diagram
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FSM state diagram Ą ASM diagrams

4

3
2

B

Cin == 0

in == 1

out = 4A

out = 3

out = 2

in

1

A

B

C

0
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