Introduction to SMT with Z3
Satisfiability Modulo Theories

- Decision problem for logical formulas similar to SAT
- Additionally supports theory fragments:
 - arithmetic, integers, reals
 - bit-vectors, uninterpreted functions, arrays
 - quantifiers, custom types
- Z3 is a solver for SMT formulas
 - It provides a great API for prototyping
First Steps with Z3 any Python

```python
from z3 import Solver, Bools, Or, Not
from z3 import sat as SAT

tie, shirt = Bools('tie shirt')  # create boolean variables

solver = Solver()  # create a solver
solver.add(Or(tie, shirt))  # assert tie or shirt
solver.add(Or(Not(tie), shirt))  # assert !tie or shirt
solver.add(Or(tie, Not(shirt)))  # assert tie or !shirt

if solver.check() == SAT:  # check if satisfiable
    print(solver.model())  # print the solution
```
Working with Integers and Arithmetic

```python
from z3 import Solver, Int
from z3 import sat as SAT

x, y = Int('x'), Int('y')  # create integer variables

solver = Solver()  # create a solver
solver.add(x + y == 42)  # assert x + y = 42
solver.add(x < 6 * y)  # assert x < 6y
solver.add(x % 2 == 1)  # assert x == 1 mod 2

if solver.check() == SAT:
    m = solver.model()  # check if satisfiable
    print(m[x] + m[y])  # retrieve the solution
    # print symbolic sum

# hint: use m[x].as_long() to get python integers
```
Bit-vectors as a Model for Memory

```python
from z3 import Solver, BitVec, Extract
from z3 import sat as SAT

x = BitVec('x', 8)  # create 8-bit variable

# Overflow and underflow semantics
solver = Solver()  # create a solver
solver.add(x + 5 < x - 10)  # assert x + 5 < x - 10

if solver.check() != SAT: exit(1)  # check if satisfiable
m = solver.model()  # retrieve the solution
print(m[x])  # print result
for i in range(8):
    print(m.eval(Extract(i, i, x)))  # print all bits
```
Signedness and Size Matter

```python
from z3 import Solver, BitVec, ULE, ZeroExt, LShR
from z3 import sat as SAT

x = BitVec('x', 8)  # create 8-bit variable
y = BitVec('y', 16)  # create 16-bit variable

# Signedness and size semantics
solver = Solver()  # create a solver
solver.add(ULE(x + 5, x - 10))  # assert x + 5 < x - 10
x0 = LShR(ZeroExt(8, x), 5)  # x0 = x << 5
solver.add(y > x0)  # assert y > (x << 5)

if solver.check() != SAT: exit(1)  # check if satisfiable
m = solver.model()  # retrieve the solution
print(m[x], m[y])  # print result
```
Quantifiers and Bounded Variables

```python
define from z3 import Solver, ForAll, Exists
define from z3 import Int, Implies, And
define from z3 import sat as SAT

define x, y = Int('x'), Int('y')  # create integers

define solver = Solver()  # create a solver

define f = ForAll([x], Implies(x > 5, x > 0))  # assert ∀ x > 5. x > 0

define e = Exists([x, y], And(y > 10, x < y))  # assert ∃ x,y. y > 10 && x < y

define if solver.check() != SAT: exit(1)  # check if satisfiable

# There is no model, all variables are bounded
```
We can Mix Bounded and Unbounded Variables

from z3 import Solver, ForAll, Exists
from z3 import Int, Implies, And
from z3 import sat as SAT

x, y = Int('x'), Int('y') # create integers

solver = Solver() # create a solver
solver.add(And(x > 42, x < 56)) # assert x > 42 && x < 56
f = ForAll([y], Implies(y + x < 100, y < 50)) # assert ∀ y + x < 100. y < 50
solver.add(f)
if solver.check() != SAT: exit(1) # check if satisfiable
print(solver.model()) # print the solution
Custom Datatypes

```python
from z3 import Solver, Datatype, Const
from z3 import sat as SAT

C = Datatype("Colour")
for c in ["red", "green", "blue"]:
    C.declare(c)
CSort = C.create()
green = CSort.constructor(1)()
solver = Solver()
x = Const("x", CSort)
solver.add(x != green)
solver.add(x != CSort.red)
if solver.check() != SAT: exit(1)
print(solver.model())
```

declare the datatype
declare constructors
create the sort
fetch a constructor
create a solver
create a colour variable
assert x != green
assert x != red
check if satisfiable
print the solution
Uninterpreted Functions

- Generally, functions look like this:
 - \(f : A_0 \times \ldots \times A_n \rightarrow B \)
 - Inputs are in sets \(A_i \)
 - \(f \) maps them to an output in \(B \)

- Uninterpreted functions are just ‘unknown’
 - The solver has to decide them
 - You can think of them as a lookup-table
 - E.g. if \(a_0 = 0 \) and \(a_1 = 5 \), set output to 7
Uninterpreted Functions in Z3

```python
from z3 import Solver, Function, Int, IntSort
from z3 import sat as SAT

x, y = Int('x'), Int('y')  # create integers
f = Function("f", IntSort(), IntSort())  # f : N -> N

solver = Solver()  # create a solver
solver.add(f(f(x)) == x)  # assert f(f(x)) = x
solver.add(f(x) == y)  # assert f(x) = y
solver.add(x != y)  # assert x != y
if solver.check() != SAT: exit(1)  # check if satisfiable
m = solver.model()  # get the solution
print(m.eval(f(5)))  # evaluate f(5)
```
from z3 import Solver, Int, IntSort, BoolSort, Function
from z3 import ForAll, And, Implies, sat as SAT

create an integer and a function
x, f = Int("x"), Function("f", IntSort(), IntSort(), BoolSort())
solver = Solver() # create a solver
fa = ForAll([x], Implies(And(x > 0, x < 4), f(x, x)))
solver.add(fa) # assert ∀ x in (0,4). f(x,x) = 1
if solver.check() != SAT: exit(1) # check if satisfiable

m = solver.model() # get the solution
for i in range(0,5): # get the solution
 vs = [int(bool(m.eval(f(i, j)))) for j in range(0,5)]
 print(("%d " * 5) % tuple(vs)) # print one row