Theories in Predicate Logic

and Satisfiability Modulo Theories (SMT)

Georg Hofferek
IAIK – Graz University of Technology
georg.hofferek@iaik.tugraz.at
Motivation

- Common “Use Cases”
 - Number Theory
 - Memory Models
 - …

- Common Frameworks
 - Fixed Premises (Axioms)
 - Specifying “Meaning” of Symbols
 - Specialized Tools
Outline

- What are Theories
 - Definition
 - Examples
- Model View
- Satisfiability for (Quantifier-free) Theory Formulas
 - Eager Encoding
 - Ackermann’s Reduction
 - Graph-based Reduction
 - Lazy Encoding
 - Congruence Closure Algorithm
 - DPLL(T)
Learning Targets

- Explain what a “Theory in Predicate Logic” is
 - Based on examples

- Explain the meaning of “Satisfiability Modulo Theories”
 - Based on examples

- Explain the Concept of Eager Encoding
 - Apply it to Formulas in \mathcal{T}_{UE} Using Ackermann’s Reduction and the Graph-based Reduction

- Explain the Concept of Lazy Encoding
 - Apply it to Formulas in \mathcal{T}_{UE} Using Congruence Closure

- Explain DPLL(T) and its advantages over Eager/Lazy Encoding
Notion of “Theory”

<table>
<thead>
<tr>
<th>Application Domain</th>
<th>Structures & Objects</th>
<th>Predicates & Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>Numbers (Integers, Rationals, Reals)</td>
<td>= < > ≤ ≥ + ·</td>
</tr>
<tr>
<td>Computer Programs</td>
<td>Arrays, Bitvectors</td>
<td>Array-Read, Array-Write, …</td>
</tr>
</tbody>
</table>
Definition of a Theory

First-Order Theory T:

1. Signature Σ
 - Constants
 - Predicates
 - Functions

2. Set of Axioms \mathcal{A}
 - Sentences (=Formulas without free variables) with symbols from Σ only

Σ-formula: (non-logic) symbols from Σ only

Σ, \mathcal{A}: possibly infinite
Example: Theory of Equality \mathcal{I}_E

- **Signature** $\Sigma_E = \{=, a_0, b_0, c_0, d_0, ... \}$
 - Binary equality predicate $=$
 - Arbitrary constant symbols

- **Axioms** \mathcal{A}_E:
 1. $\forall x. x = x$ \hspace{1cm} (reflexivity)
 2. $\forall x. \forall y. (x = y \rightarrow y = x)$ \hspace{1cm} (symmetry)
 3. $\forall x. \forall y. \forall z. (x = y \land y = z \rightarrow x = z)$ \hspace{1cm} (transitivity)
Only models satisfying axioms are relevant for

- Satisfiability, Validity, Equivalence, Entailment
- \(\Rightarrow\) “Satisfiability modulo (=‘with respect to’) theories”
\mathcal{T}-Satisfiability

- **Green:** Models Satisfying all Axioms
- **Violet:** Models Satisfying Formula in Question
\mathcal{T}-Validity

- **Green**: Models Satisfying all Axioms
- **Violet**: Models Satisfying Formula in Question

\mathcal{T}-Valid

\mathcal{T}-Valid

Not \mathcal{T}-Valid
\(\mathcal{T} \)-Entailment and \(\mathcal{T} \)-Equivalence

- Similar to Satisfiability & Validity

- Only consider Models satisfying all axioms
 - Models not satisfying (at least) one axiom: Irrelevant Model!
Theory Formulas vs. Predicate Logic

Theory

Formula

ϕ^T

$\mathcal{A} \rightarrow \phi$

equivalid

equisatisfiable

$\mathcal{A} \land \phi$
Fragment of a Theory

- Syntactically restricted subset
 - Quantifier-free fragment
 - Conjunctive fragment
 - Array Property fragment
 - Special grammar for index use
 - ...

Deciding Satisfiability of (quantifier-free) Theory Formulas

- Satisfiability *modulo* Theories (SMT)
 - Theory Atoms
 - \(a = b, b = c, ... \)
 - Propositional structure
 - \((a = b) \lor (b = c) \land \neg (c = a) \)
 - \(p \lor q \land \neg r \)
Deciding Satisfiability of (quantifier-free) Theory Formulas

- **Eager Encoding**
 - Equisatisfiable propositional formula
 - Constraint clauses
 - SAT solver

- **Lazy Encoding**
 - SAT Solver
 - Theory Solver
 - Conjunctive Fragment
 - Blocking Clauses
Example: Theory of Uninterpreted Functions and Equality \mathcal{T}_{UE}

- **Signature** $\Sigma_{UE} = \{=, a, b, c, d, ... \}$
 - Binary equality predicate $=$
 - Arbitrary constant- and function-symbols

- **Axioms** \mathcal{A}_{UE}:
 1.-3. same as in \mathcal{A}_E (reflexivity), (symmetry), (transitivity)
 4. $\forall \bar{x}. \forall \bar{y}. ((\wedge_i x_i = y_i) \rightarrow f(\bar{x}) = f(\bar{y}))$ (function congruence)

Axiom Schema: Template for (infinite number of) axioms
Two-Stage Eager Encoding

quant.-free \mathcal{T}_{UE}-formula

Ackermann’s Reduction

equisatisfiable quant.-free \mathcal{T}_{E}-formula

Graph-based Reduction

equisatisfiable propositional formula
Ackermann’s Reduction

- Fresh Variables
 - \(f(x) \mapsto f_x \)

- Functional Constraints
 - \((x = y) \rightarrow (f_x = f_y) \)

- \(\phi_E = \phi_{FC} \land \hat{\phi}_{UE} \)
Graph-Based Reduction

- Non-Polar Equality Graph
 - Node per variable
 - Edge per (dis)equality

- Make it **chordal**
 - No chord-free cycles (size > 3)
Graph-Based Reduction

- **Fresh Propositional Variables**
 - \(a = b \iff e_{a=b}\)
 - **Order!**
 - \(b = a \iff e_{a=b}\)

- **Triangle \((i, j, k)\):**
 - **Transitivity Constraints**
 - \((e_{i=j} \land e_{j=k} \rightarrow e_{i=k}) \land (e_{i=j} \land e_{i=k} \rightarrow e_{j=k}) \land (e_{i=k} \land e_{j=k} \rightarrow e_{i=j})\)

- \(\phi_{prop} = \phi_{TC} \land \hat{\phi}_E\)
Lazy Encoding

φ

SAT Solver

Assignment of Literals

Theory Solver

Blocking Clause

UNSAT

SAT
Conjunctive Fragment of \mathcal{T}_{UE}

- Conjunction of theory literals
 - Equalities ($t_1 = t_2$)
 - Disequalities $\neg(t_1 = t_2)$
 - alternatively: ($t_1 \neq t_2$)
- Terms t_i
 - Constants
 - $a, b, c, d, ...$
 - Uninterpreted Function instances
 - $f(a), g(b), h(c, d), ...$
Congruence-Closure Algorithm

- **Equivalence Classes**
 - $t_1 = t_2$: same class for t_1, t_2
 - Other terms: singleton class
 - Shared Term between classes:
 - Merge classes! (repeat)
 - t_i, t_j from same class:
 - Merge classes of $f(t_i), f(t_j)$ (repeat)

- **Check Disequalities** $t_k \neq t_l$
 - t_k, t_l in same class: **UNSAT**!
 - Otherwise: **SAT**!
Disadvantages of Lazy Encoding

- Many (similar) SAT calls
- Full assignment before call to Theory solver
- Very specific blocking clauses

Solution:
Integration into DPLL
DPLL(T)

Start

Decide

full assignment

partial assignment

Learn & Backtrack

conflict

partial assignment

BCP/PL

Analyze Conflict

UNSAT

partial assignment

Add Clauses

theory propagation / conflict

Theory Solver

partial assignment

SAT

partial assignment
Summary

- Notion of “Theory”
 - Satisfiability Modulo Theories

- Eager Encoding
 - Example: Ackermann’s Reduction & Graph-based Reduction

- Lazy Encoding
 - Example: Congruence Closure

- DPLL(T)
 - Advantages over Eager/Lazy Encoding