Propositional Logic

Syntax, Semantics, Models, Applications

Georg Hofferek
IAIK – Graz University of Technology
georg.hofferek@iaik.tugraz.at
Motivation

- Basis for further topics
- Syntax
 - Construct formulas
- Semantics
 - Understand formulas
- See usage examples
Outline

- Syntax
 - Symbols
 - Grammar

- Semantics
 - Meaning
 - Models
 - Truth Tables
 - Validity, Satisfiability, Semantic Entailment & Equivalence

- Applications
Learning Targets
Syntax

- Explain syntax of propositional formulas
 - Based on examples

- Name elements/symbols/connectives of propositional formulas

- Draw parse tree of propositional formulas
Learning Targets
Semantics

- Explain semantics of prop. formula
 - Based on a model
- Construct and explain truth table of prop. formula
- Decide validity, satisfiability, semantic entailment/equivalence of prop. formula(s)
 - Using truth tables
- Explain validity, satisfiability, semantic entailment/equivalence
 - Using examples
- Model declarative sentences as prop. formula
 - As detailed as possible
Learning Targets

Applications

- Name and explain examples for usage of prop. logic to solve problems

- Solve suitable problems by using prop. logic
 - Reduction to “Classical questions”
Operator Precedence

- Without parentheses:
 1. Negation \(\neg \)
 2. Conjunction \(\land \)
 3. Disjunction \(\lor \)
 4. Implication \(\rightarrow \)

- Right-associative:
 \[p \rightarrow q \rightarrow r \text{ means } p \rightarrow (q \rightarrow r) \]
Declarative Sentence

- Statement
 - True
 - False

- Simple
 - “The sun is shining.”
 - “Tomorrow is Wednesday.”
 - \(\rightarrow \) Propositional Atoms

- With Structure
 - “If today is Tuesday, tomorrow is Wednesday.”
 - \(p \rightarrow q \), \(p \): “Today is Tuesday.” \(q \): “Tomorrow is Wednesday.”
 - “This lecture is exciting and not boring.”
 - \(p \land \neg q \), \(p \): “This lecture is exciting.” \(q \): “This lecture is boring.”
Non-Declarative Sentences

- **Questions**
 - “What time is it?”

- **Commands**
 - “Do your homework!”

- **Exclamations**
 - “Oh my god!”

- **Various others**
 - “Ready, steady, go.”
 - “Good night, my friend.”
 - “May the force be with you.”
 - “Live long and prosper.”
Models

- Model \cong Valuation \cong Environment \cong Interpretation \cong Assignment
- Mapping: \{Atomic propositions\} \mapsto \{True, False\}
Caveat: “Model”

Sometimes: Term “Model” only used, if it makes formula true!
Notation

- **True:**
 - T
 - 1
 - \top (LaTeX: \top)

- **False:**
 - F
 - 0
 - \bot (LaTeX: \bot)
Satisfiability

- (At least) one model satisfies formula
Satisfiability (cont.)

- One Model
- Several Models
- All Models
Validity

- All models satisfy formula
Semantic Entailment

- ϕ is special case of ψ
Semantic Entailment (cont.)

- **Written:** \[\varphi \models \psi \] (Latex: \models)

- **Meaning:** \(M \models \varphi \Rightarrow M \models \psi \)
 - **Note:**
 \[M \not\models \varphi \Rightarrow \begin{cases} M \models \psi, & \text{or} \\ M \not\models \psi \end{cases} \]

- **Examples:**
 - \((p \land q) \models p \)
 - \((p \lor q) \not\models p \)
Semantic Entailment (cont.)

$\varphi \models \psi$

$\varphi \not\models \psi$

$\varphi \not\models \psi$

$\bot \models \psi$
Semantic Equivalence

- Written: \(\varphi \equiv \psi \)
- Special Case of Semantic Entailment
 - \(\varphi \models \psi \), and
 - \(\psi \models \varphi \).
 - Thus: \(\varphi, \psi \) satisfied by the same models
Relation between these Notions

- Close relation between...
 - Satisfiability
 - Validity
 - Semantic Entailment
 - Semantic Equivalence

- Can be reduced to each other
 - Algorithm for one → Solve all

More on October 28, 2014
Truth Table

- Row for each Model \mathcal{M}_i
 - $\#\text{Rows} = 2^{\#\text{Vars}}$

- Column for each (sub-)formula φ_j

- Entry $E_{i,j}$
 - True, if $\mathcal{M}_i \models \varphi_j$
 - False, if $\mathcal{M}_i \not\models \varphi_j$
Truth Table: Example

<table>
<thead>
<tr>
<th>#</th>
<th>p</th>
<th>q</th>
<th>r</th>
<th>(\neg r)</th>
<th>q (\lor \neg r)</th>
<th>p (\land (q \lor \neg r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: Example

<table>
<thead>
<tr>
<th>#</th>
<th>p</th>
<th>q</th>
<th>r</th>
<th>¬r</th>
<th>q ∨ ¬r</th>
<th>p ∧ (q ∨ ¬r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: Usage

- **Satisfiability**
 - (At least) one row with True?

- **Validity**
 - All rows True?

- **Entailment** $\varphi \vdash \psi$
 - ψ has True at least where φ has True?

- **Equivalence** $\varphi \equiv \psi$
 - φ, ψ have True in same rows?
Applications

- Choose “Classical Question”
 - Often: Satisfiability

- Find Encoding
 - Variables
 - Meaning

- Construct Formula
 - Answer question

- Interpret Result
Application: Sudoku

- One number (1-9) in each square
- All numbers in one row
- All numbers in one column
- All numbers in one 3x3 square must be different
- Usually: Some numbers given
Summary

- Syntax
 - Elements/Symbols
 - Grammar
- Declarative Sentences
- Semantics
 - Models
 - Recursive Definition
 - Truth Tables
- Satisfiability, Validity, Semantic Entailment & Equivalence
- Example Applications