Learning Targets

Collection for Winter Term 2014/15

Georg Hofferek
IAIK – Graz University of Technology
georg.hofferek@iaik.tugraz.at
Introduction & Motivation

- List and explain uses of logic
 - (in computer science)

- Motivate the need for logic (in computer science) by examples

- Name and explain the “classical questions” in logic
Syntax

- Explain syntax of propositional formulas
 - Based on examples

- Name elements/symbols/connectives of propositional formulas

- Draw parse tree of propositional formulas
Semantics

- Explain semantics of prop. formula
 - Based on a model
- Construct and explain truth table of prop. formula
- Decide validity, satisfiability, semantic entailment/equivalence of prop. formula(s)
 - Using truth tables
- Explain validity, satisfiability, semantic entailment/equivalence
 - Using examples
- Model declarative sentences as prop. formula
 - As detailed as possible
Applications

- Name and explain examples for usage of prop. logic to solve problems

- Solve suitable problems by using prop. logic
 - Reduction to “Classical questions”
Natural Deduction

- Explain natural deduction and its rules
 - Based on examples

- Do a deduction proof or find a counterexample for a given sequent

- Check (or find errors in) a given deduction proof

- Explain “soundness” and “completeness”
 - Of natural deduction for propositional logic
Combinational Equivalence Checking

- Explain the relation between...
 - Satisfiability, validity, entailment, equivalence
 - And how they can be reduced to each other

- Explain “equisatisfiability”
 - Based on an example

- Explain and compute normal forms
 - Of propositional formulas

- Explain & perform Tseitin’s encoding
 - On propositional formulas

- Check equivalence of combinational circuits
 - Using Tseitin’s encoding and a SAT solver
SAT Solving

- Based on example(s), explain
 - SAT Solver
 - DPLL Algorithm
 - Boolean Constraint Propagation
 - Pure Literals
 - Clause Learning
 - Resolution
 - Refutation Proofs

- Use the above tools to proof satisfiability or unsatisfiability of a formula in CNF
 - If satisfiable: Give satisfying model
 - If unsatisfiable: Give refutation proof
Symbolic Computations & Interpolation

- Symbolically encode sets
 - In particular: States, Edges of Graphs

- Perform set operations
 - on symbolically encoded sets

- Explain Craig interpolants
 - and their three main properties

- Compute a Craig interpolant
 - based on a resolution proof,
 - using McMillan’s rules
Binary Decision Diagrams

- Explain BDDs (and components) and their properties, advantages, and disadvantages
 - Based on example

- Determine the function of a given BDD

- Construct a BDD for a given function
 - By computing cofactors
 - Using a given variable order

- Convert a BDD into a multiplexer circuit
Predicate Logic

- Explain syntax of predicate logic
 - Based on examples
- Model (natural, declarative) sentences with predicate logic
- Explain Models of predicate logic
 - Say what they consist of
 - Give examples
- Explain the semantics of predicate logic
 - Based on examples of formulas and models
- Compute the semantics of a formula in predicate logic
 - For a given model
- Explain satisfiability and validity for predicate logic
Natural Deduction for Predicate Logic

- Perform substitution
 - In predicate logic formulas
- Explain the notion of “free for”
 - In context of substitution
 - Give examples
- Explain the predicate-logic-specific rules of natural deduction
 - Using examples
 - Check given “proofs” for correctness
- Proof sequents in predicate logic, or show that they are invalid
 - Using natural deduction proofs, or counterexamples
Real Proofs

- Apply natural deduction to practical problems

- Explain the deductive structure in “everyday” proofs
Theories in Predicate Logic

- Explain what a “Theory in Predicate Logic” is
 - Based on examples
 - State Axioms of \mathcal{T}_E and \mathcal{T}_{UE}

- Explain the meaning of “Satisfiability Modulo Theories”
 - Based on examples

- Explain the Concept of Eager Encoding
 - Apply it to Formulas in \mathcal{T}_{UE} Using Ackermann’s Reduction and the Graph-based Reduction

- Explain the Concept of Lazy Encoding
 - Apply it to Formulas in \mathcal{T}_{UE} Using Congruence Closure

- Explain DPLL(T) and its advantages over Eager/Lazy Encoding
Decidability

- Explain what a *decision problem* is
 - Give examples (decidable & undecidable ones)
- Explain *(semi-)* decidability
- Sketch proof of undecidability of predicate logic
 - Using reduction of HALT problem
- Explain relation between problem reduction and decidability
- Explain Gödel’s Incompleteness Theorem
 - Sketch proof